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Sustainability

based on

1. environmental impact
2. economic (cost)

3. societal/functional criteria

Broadly defined, sustainability is related to satisfying
three sets of requirements (pillars)
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Sustafhability categories (pillags):
93 Environmental 8953 Economic Societal & Functional
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Course OQOutline

2. Design and analysis of GRS walls. External, global and internal design limit states are presented. The
characterization of the mechanical properties of geosynthetic reinforcement materials is discussed and how
these properties are determined from physical testing and used in internal stability design and analysis is
demonstrated. The new stiffness method recently adopted in the US and Canada is explained. The essential
features of emerging probabilistic methods of analysis are introduced.
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Modes of failure

External

Internal

c) pullout d) tensile over-stress ) internal sliding
e
&
Facing <<3]
connection ) column shear failure h) toppling

fallure
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Design philosophies in North America

R
; R Factor of safety approach
— Ry
I RS R, tang¢ + cL
———— Rh < LR —
| R; | FS FS
| L |

Load and resistance factor design (LRFD) (North America)

YoRn < @Rs = @ (R, tan¢ + cL)

ps1 Often ¢ is selected so that
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Geometry and forces for external stability limit states calculations
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Base slidin
Py = Kag
H/2
. . R
FOS = res'fs‘trng force _ S
driving forces ~ Pa + Py
Fos=W+ab) xu
Pa + Pq

check sliding at soil—geosynthetic interface:
soil—geotextile:
p = tanggy = tan(2/3)p
FOS =15 ( FHWA 1989)
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Bearing capacity
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Global and compound stability

panels or units.

GLOBAL

Limits of wall
for design

Embedment Reinforcement length, L ——|

depth

Wall base width, B
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Global and compound stability
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Global stability
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Compound stability
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Calculation of the maximum tensile load T, in the reinforcement under operational (serviceability) conditions

KRR XXXXXXX XX

internal RUPTURE CONNECTION Failure PULLOUT
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Calculation of reinforcement tensile load

Equivalent

Horizontal component of e th/ coefficient of earth pressure
z

pressure distribution: o,
Tmax =0n Sy, <T,/FS

Reinforcement
layer (typical)
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Simplified Method
Simplified Method q
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A signature feature of this approach is the use of
the creep-reduced tensile stiffness of the
reinforcement as a key parameter to compute the
magnitude of reinforcement loads under
operational conditions

This is a paradigm shift from the Simplified Method
in previous editions of the AASHTO code which is
based on the soil peak friction angle for
geosynthetic MSE walls

Simplified Method versus Stiffness Method

Stiffness Method is now specified for the internal
stability design of geosynthetic mechanically
stabilized earth (MSE) walls in AASHTO 2020 and
as an accepted method in the Canadian Highway
Bridge Design Code (CSA 2024) in Canada for
extensible and inextensible MSE wall systems
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Accuracy of Simplified Method

1000 -

100 4

O  Geosynthetic reinforcement (granular backfill)
® Geosynthetic reinforcement (cohesive-frictional backfill) All

On average measured tensile loads were
1/3 of those predicted using AASHTO
Simplified Method

Measured T . (kN/m)

backfill

Cohesive-frictional

n=192

100

Predicted T __ (kN/m)

1000
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Simplified Method versus Stiffness Method

Simplified Method

Stiffness Method
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Dimensionless load distribution factor (D,4y)

Tmax :Sv[yrH+ (HrEf/H) YfS] Kavhq)qu)gq)fsq)loca'(bc

L=07H=42m
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Distribution and magnitude of maximum tensile loads (T,,,,) in 6 m-high wrapped-face wall. ® =0, S =0, @y = Oy = Doy =P, = 1
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Reinforcement stiffness (@)

+ (Href/H) st] Kavh
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Distribution and magnitude of maximum tensile loads (T, in 6 m-high wrapped-face wall. ® =0, S =0, @y = Oy = Doy =P, =1
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Reinforcement stiffness at 1000 hours and 2% strain

EOC =770 hours

———Calcuated (t = 500 hours)

—-—- Calcuated (t = 770 hours)

—— Calcuated (t = 1000 hours)
A Measured (t = 500 hours)
O  Measured (t = 1000 hours)

Secant stiffness: J(g,7) =

Time t unit: hour . i
PP geogrid: J,(f) = 258° "' kN/m, 7(f) = 0.0658f *** m/kN

150
,5122*\
: I\
= 104 \\
595 D
5 g2/
5
173
Q
£
=
k7
= 50+
@
Q
7]
)
¢ 2
0

5 10 15 20

Strain, & (%)

Yu, Y., Bathurst, R.J., Allen, T.M. and Nelson, R. 2016. Physical and numerical modelling of a geogrid reinforced incremental concrete panel
retaining wall. Canadian Geotechnical Journal 53(12): 1883-1901

This value is included in
manufacturer/supplier AASHTO
NTPEP reports
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Stiffness versus strength
100000
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CRS fests (10% strain/min) rate-of-strain (CRS) tests performed at -~
. . E B HDPE geogrid 1357 10% strain per minute
Useful_ approximations can be & & PETwovengeogid  -99 T [gw=aeTy -
found in = 10000y & PPgoogrd ~  -142T,|,_g o~
. Z & PP woven geotextle =31 T, B
Bathurst and Naftchali (2021) < O PET woven geotextile =7.3 T,
Q  PET strap =78 T,
S
o 1000 5 Isochronous creep stiffness
E (2%, 1000 h
~~ J (2%, 1000 h) =5.0 Ty
\] : a x T It E 100 o
u 4
~ Creep tests
™ HDPE geogrid =63T,
N PET woven geogrid =61T
7 R
(ql)) E PP geogrid =6.3T,
— | — . O PP woven geotexile =25T,
c — .| —.—. O PETwoven geotextie =51 T,
E —J1_ . QO PETstrap =48T,
= 1 T T
U) 1 10 100 1000 10000
Tensile strength, T, (KN/m or kN/strap)
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Facing stiffness factor (®;)

Tmax = Sv[’YrH Dtmax+ (Href/H) st] Kavhq)fblocalq)c
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Facing stiffness factor (d;,)

Tmax = Sv[’YrH Dtmax+ (Href/H) st] I‘<':-1vh(j[)fb|0C6‘|C[)C
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Influence factors @, and @,

Tmax = Sv[yrH Dtmax+ (Href/H) st] Kachfsq)locachc

» As the facing batter angle (o) from the vertical increases, the loads in the reinforcement layers
will decrease.

+ @y = 1 for vertical-faced walls and decreases with increasing batter angle measured from the
vertical.

» For vertical or near-vertical walls (e.g., facing angle o < 10°), @4, can be taken as 1 with little
practical error.

Tmax :Sv[yrH Dtmax+ (Href/H) st] Kthchbq)chC

» The magnitude of maximum reinforcement loads can be influenced by local changes in spacing
and reinforcement type (i.e., different stiffness J;).

» Default value @, = 1 corresponding to the case when all layers are equally spaced and have
the same stiffness.
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Soil cohesion

Tmax = Sv[’YrH Dtmax+ (Href/H) YfS] Kavhq)qu)gq)fsq)lo

1. A permanent and consistent cohesive strength component
(c > 0) in the reinforced soil backfill will reduce the earth
pressure that would otherwise be carried by a purely
frictional soil.

2. @, ranges from 0 to 1 with the value of 1 corresponding to
the no-cohesion case (c = 0).

3.0, < 1 values can only be used if the c-¢ soil has
significant true cohesion due to clay content and defined by
plasticity index Pl > 6, and this cohesion will persist over
the lifetime of the structure.

4. Excludes the case of a transient apparent cohesion due to
matric suction for partially saturated granular soils as well

o 1 2 3 4 5 & 71 8 8 10 11 12 as c-¢ soils that could soften/weaken over time due to

(KN/m) moisture or deformation.

15

Stiffness Method

J (kN/m) = 100 300 1000 2000 5000
£ (%)=1.1 050021 0.12 0.08

Elevation above wall toe, (H- z) (m)
w
o

o -
n o
s

o
o

Maximum load in reinforcement layer, T,

max

Distribution and magnitude of maximum tensile loads (T,,,,) in 6 m-high wrapped-face wall. ® =0, S = 0, @y, = O = Djyey = 1,
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6.0

55

_ S,=04m
E 50 H=6m
N 4 q=0

s 1 = 18 KN/m®
T
= 40 )
‘8 35 ¢, = 35°
g 30
o Simplified Method
g 25 impiifie etho
G
c 20
B 45 J(kN/m)=100 300 1000 2000 5000
g e (%)=24 11 043 026 013
b 107 ¢ ¢ 9

05 Stiffness Method

b 929 99
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Maximum load in reinforcement layer, T, (kN/m)
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Soil cohesion

Tmax :SV[YFH Dtmax+ (Href/H) YfS] Kavth)fb(I)gq)fscI)lo

1. A permanent and consistent cohesive strength component
(c > 0) in the reinforced soil backfill will reduce the earth
pressure that would otherwise be carried by a purely
frictional soil.

2. @, ranges from 0 to 1 with the value of 1 corresponding to
the no-cohesion case (c = 0).

3.®, < 1 values can only be used if the c-¢ soil has
significant true cohesion due to clay content and defined by
plasticity index Pl > 6, and this cohesion will persist over
the lifetime of the structure.

4. Excludes the case of a transient apparent cohesion due to
matric suction for partially saturated granular soils as well
as c-¢ soils that could soften/weaken over time due to
moisture or deformation.

Distribution and magnitude of maximum tensile loads (T ,,,) in 6 m-high wrapped-face wall. ® =0, S = 0, @y, = g = Dy ey

Soll failure limit state

The soil failure limit state is used to ensure
that the reinforced soil zone remains at a
working stress condition consistent with
operational conditions.

This limit state does not appear in the
Simplified Method which is a fully force-
based design approach.

For the assumption of working stress
conditions to be valid, the soil must not fail
(i.e., develop a contiguous failure
mechanism through the reinforced soil zone).

Passive
zone

o, =7z+q

<

PIRTRIRNNg

=

/<45n + o2

Reinforcement layer

0.7TH
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Soil fail limit stat
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For many walls mm) T =S [y HD

For many walls ...

facing batter < 10 degrees from vertical

no surcharge 1 single reinforcement type
TmaX - SV [Yr H Dtmax + (Hg@) ’YfS] Kavh q)gq)fs
\ no cohesion }

|

tmax] Kavthg(Dfs
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