

				Number		Numbe r of		Range of	FS _{cR} ®		
		Data group	Reinforcemen t material	of different products	Range of (kN/m) ^(b)	creep- rupture data points	Test method	creep rupture time (e) (log hours)	75 years (5.82 log hours)	120 years (6.02 log hours)	Reference
		1	PET geogrid	5	52.8 - 435	39	Block (c) SIM (d)	0.30 - 6.88	1.56	1.58	NTPEP (2008a)
		2	PET geogrid	3	60.4 - 471	24	Block SIM	0.84 - 6.64	1.41	1.43	NTPEP (2008b)
		3	PET geogrid	3	35.7 - 427	19	Block SIM	-0.34 - 6.21	1.56	1.58	NTPEP (2009a)
	Summary of creep	4	PET geogrid	3	37.5 - 190.5	19	Block SIM	-0.25 - 6.53	1.52	1.54	NTPEP (2009b)
	testing database and	5	PET geogrid	5	154 - 414	21	Block SIM	-0.37 - 6.21	1.59	1.61	NTPEP (2009c)
	computed creep	6	PET geogrid	15	42.7 – 230	20	Block SIM	0.35 - 6.99	1.39	1.40	NTPEP (2010a)
reduction factors (FS _{CR})	reduction factors	7	PET geogrid	7	32.8 - 174	20	Block SIM	0.34 - 6.85	1.49	1.51	NTPEP (2010b)
	(FS)	8	PET geogrid	1	75	10	Block	-1.24 - 6.65	1.67	1.70	Thornton and Arnett (1997a)
		9	PET geogrid	1	121	11	Block	-0.72 - 6.76	1.64	1.65	Thornton and Arnett (1997b)
		10	PET geogrid	1	3.5 (kN/rib)	23	Block SIM Block SIM	0.89 - 6.38	1.48	1.49	Thornton et al.
		11		1	NA ^(g)	20		-0.52 - 6.08	1.57	1.58	(1998a)
	12	PET geogrid	1	104.9	12	SIM	-0.78 - 10.15	1.45	1.46	Greenwood and Voskamp (2000)	
		13	PET strap	1	325	22	Conventiona I SIM	1.32 - 6.89	1.43	1.44	Greenwood et al. (2004)
		14	PET strap	20	99.9 - 1480	27	Block SIM	0.51 - 7.68	1.36	1.36	NTPEP (2010a)
		15	PET yarn	1	NA ^(g)	12	Block SIM	-0.90 - 6.51	1.47	1.48	Thornton et al. (1998b)
		16	PET yarn (ii)	1	42.1	12	SIM	-0.60 - 6.51	1.66	1.67	Greenwood (2002)
		17	PET yarn	6	NA	27	Block SIM	-1.74 - 6.96	1.59	1.60	Stevenson and Lozano (2004)
		18	PET nonwoven geotextile	1	11.0	13	SIM	-1.82 - 6.99	1.46	1.47	Bueno et al.
	Bathurst, R.J., Huang, B. and Allen, T.M. 2012. Interpretation of laboratory	19	PP nonwoven geotextile	1	11.1	12	SIM	-1.71 - 3.69	1.76	1.78	(2005)
		20	PP woven geotextile	1	52	24	Conventiona I SIM	-0.43 - 8.18	2.80	2.89	Thornton and Baker (2002)
	creep testing for reliability- based analysis and load and	21	HDPE geogrid	3	61.9 - 122.5	14	Block	-0.19 - 4.44	3.12	3.20	Small and Greenwood (1992)
	resistance factor design	22	HDPE geogrid	4	73 – 185	62	SIM	0.00 - 7.44	2.48	2.51	Wrigley et al. (2004)
	(LRFD) calibration,	23	HDPE geogrid	5	NA ^(g)	39	Block	-1.79 - 8.50	NA ^(g)	NA ^(g)	Wrigley et al. (1999)
	Geosynthetics International,	24	HDPE geogrid	3	75.2 - 149	27	Block	0.45 - 5.91	2.54	2.57	NTPEP
	voi. 19, No. 1, pp. 39-53	25	0.0.	1	180	11	SIM	2.65 - 6.27	2.59	2.65	(20100)
.j. bathurst				Σ = 94		∑ = 540			1.36 - 3.12	1.36 - 3.20	

					-								
Ge	ogride	5											
		Polymer Type [1]	Coating Type [1]	Dimensional P		al Properties [2]		Tensile Streng ASTM D 6637 [th/[Elongation] 2] kN/m (Ib/ft)/%		[4]	÷
ame	uring			Mass/Unit Area ASTM D 5261 g/m2 (oz/yd2)	Aperture Size mm (in)		Strength @ 5% Strain		Ultimate Strength/% (Tult)		ited AD [3] A m (lb/ft)	3G4-MD) (in sar	I Applic
Product N	Manufact Process				Ш	ΩX	QM	QX	MD	DX	Creep Limi Strength-N D 5262 kN/	LTDS GRI (kN/m (lb/ft	Manufactu Suggested tions [5]
Mirafi	TenCate	Geosy	nthetic	cs)							www	/.mirat	i.com
Miragrid 2XT	waven	PET	PVC	NP	22 (0.875)	25 (1.0)	NA	NA	29.2 (2000)	29.2 (2000)	18.2 (1250)	15.8 (1082)	W, S, E
Miragrid 3XT	waven	PET	PVC	NP	22 (0.875)	25 (1.0)	15.4 (1056)	NA	46.0 (3150)	NA.	28.7 (1969)	24.9 (1705)	W, S, E
Miragrid SXT	Waven	PET	PVC	NP	22 (0.875)	25 (1.0)	25.4 (1740)	NA	62.7 (4300)	NA	39.2 (2688)	34.0 (2327)	W, S, E
Miragrid 7XT	wowen	PET	PVC	NP	22 (0.875)	25 (1.0)	31.5 (2160)	NA	83.2 (5700)	NA	52.0 (3563)	45.0 (3084)	W, S, E
Miragrid 8XT	wowen	PET	PVC	NP	22 (0.875)	25 (1.0)	35.8 (2520)	NA	102.1 (7000)	NA	63.8 (4375)	55.3 (3788)	W, S, E
Miragrid 10XT	woven	PET	PVC	NP	22 (0.875)	25 (1.0)	45.5 (3120)	NA	138.6 (9500)	NA	86.6 (5938)	75.0 (5141)	W, S, E
Miragrid 20XT	waven	PET	PVC	NP	38(1.5)	18 (0.7)	77.9 (5340)	NA	181.2 (12,420)	NA	105.4 (7221)	91.2 (6252)	W, S, E
Miragrid 22XT	waven	PET	PVC	NP	81 (3.2)	7.6 (0.3)	97.8 (6700)	NA	259.1	NA	150.7	130,4	W, S, E

Geosynthetic Reinforced Structures including Seismic Aspects – 12 ICG

113

r.j. bathurst

Conclusions

- Reliability-based design gives a more nuanced appreciation of the margin of safety for internal limit states for MSE walls compared to conventional factor of safety, partial factor, and load and resistance factor design (LRFD) approaches
- Accuracy of the load and resistance models *and* uncertainty in the magnitude of nominal load and resistance terms is considered explicitly
- The calculation of reliability index can be done using a spreadsheet and thus Monte Carlo simulation is avoided
- The method provides a quantitative link between the conventional factor of safety familiar to geotechnical engineers, and reliability index which is used in contemporary probabilistic analysis and design of geotechnical structures

r.j. bathurst

SELECTED REFERENCES

Bathurst, R.J. and Allen, T.M. 2021. Reliability assessment of internal stability limit states for two as-built geosynthetic MSE walls. ISSMGE International Journal of Geoengineering Case Histories 6(4): 67-84 (https://doi.org/10.4417/IJGCH-06-04-05).

Bathurst, R.J., Miyata, Y. and Allen, T.M. 2020. Deterministic and probabilistic assessment of margins of safety for internal stability of as-built PET strap reinforced soil walls. Geotextiles and Geomembranes 48: 780-792 (<u>https://doi.org/10.1016/j.geotexmem.2020.06.001</u>).

Bathurst, R.J., Allen, T.M., Miyata, Y., Javankhoshdel, S. and Bozorgzadeh, N. 2019. Performance-based analysis and design for internal stability of MSE walls. Georisk 13(3): 214-225 (<u>https://doi.org/10.1080/17499518.2019.1602879</u>).

Bathurst, R.J., Lin, P. and Allen, T.M. 2019. Reliability-based design of internal limit states for mechanically stabilized earth walls using geosynthetic reinforcement. Canadian Geotechnical Journal 56(6): 774-788 (<u>https://doi.org/10.1139/cgj-2018-0074</u>).

Bathurst, R.J. and Javankhoshdel, S. 2017. Influence of model type, bias and input parameter variability on reliability analysis for simple limit states in soil-structure interaction problems. Georisk 11(1): 42-54 (<u>http://dx.doi.org/10.1080/17499518.2016.1154160</u>).

r.j. bathurst