
<section-header><section-header><text><text><text>

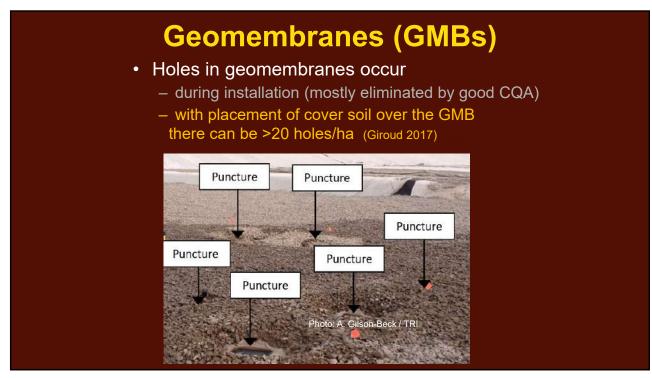
2

Short-term processes that can increase fluid ingress or egress

- Greatest short-term risk is due to hole formation:
 - During construction minimized by good design, CQC/CQA
 - Due to activities above completed liner
 - Possibly due to animals (e.g., rodents, bears)
 - both minimized by good design and site-use restrictions
 - Caused by excessive differential settlement
 - Due to nature of materials above/below GMB and applied pressures

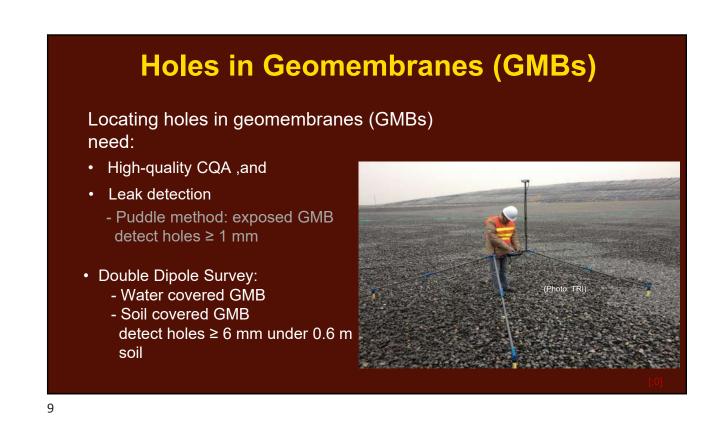
4

5


Holes in Geomembranes (GMBs)

To minimize holes in geomembranes (GMBs) need:

- High-quality CQA ,and
- Leak detection
 - Puddle method: exposed GMB
 detect holes ≥ 1 mm


6

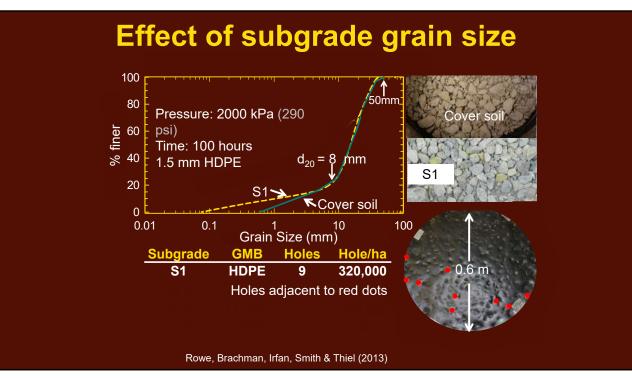
7

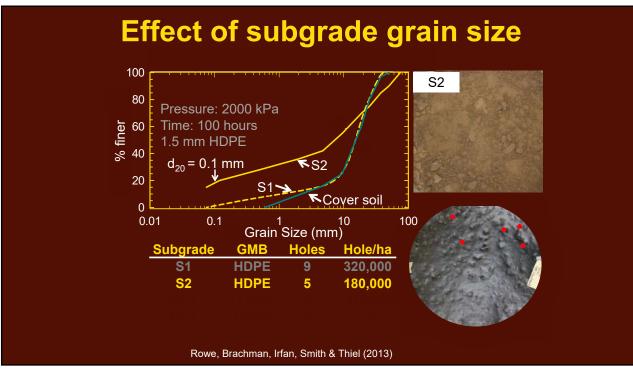
8

Leak detection survey

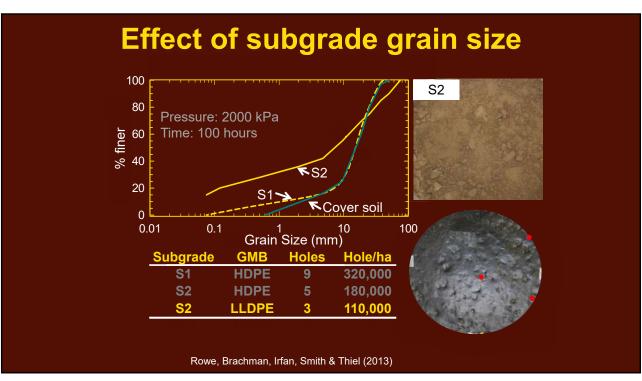
- electrically conductive medium above and below GMB
 - wet gravel or geotextile over GMB
- induce voltage difference between top and bottom
- passed electrodes over top to measure electrical potential
- anomalies in electrical potential indicate holes in GMB
 - caused by flow of current along conductive path through the hole
 ASTM D7002 or D7007

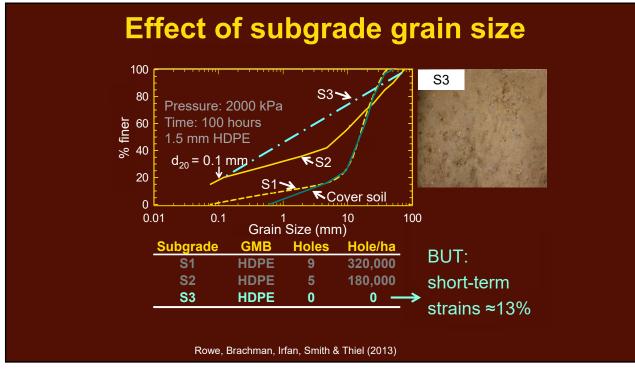
10

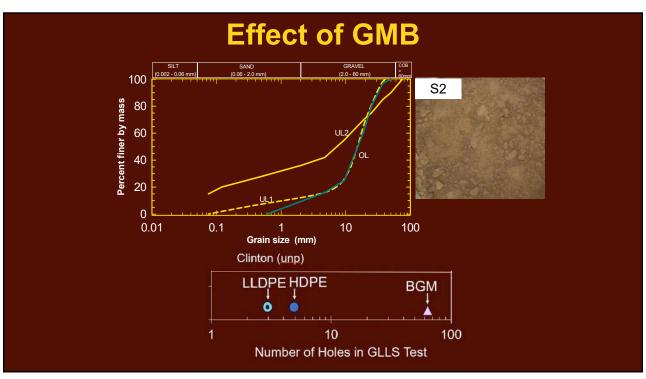

Puncture and excessive strain due to applied pressures


- Short-term puncture
- Strains generate longer-term failure
- Vertical pressure ≤ 3000 kPa

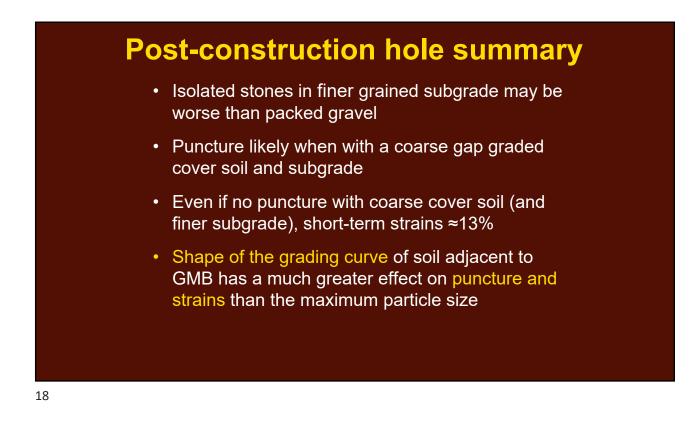
Geosynthetic liner longevity simulator GLLS

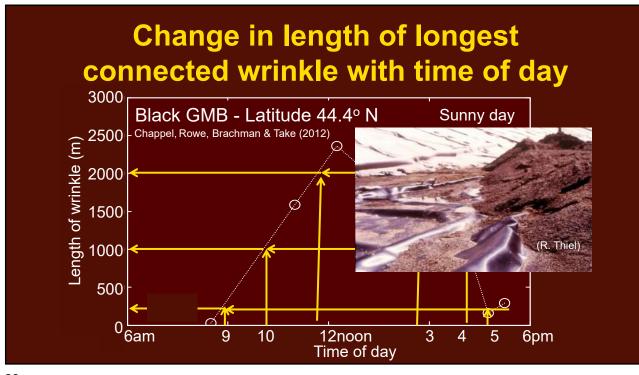


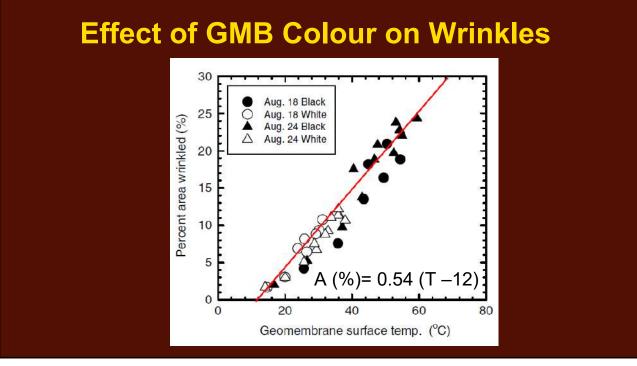

12

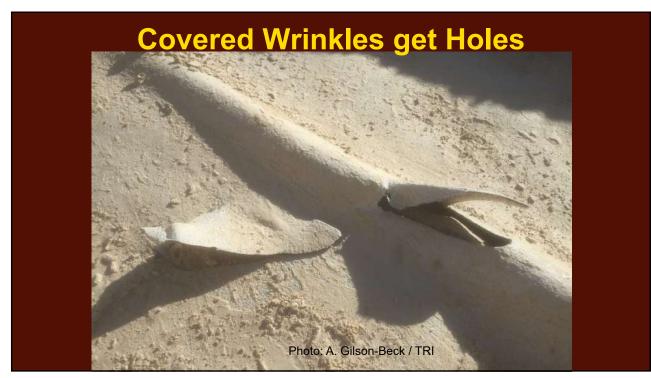


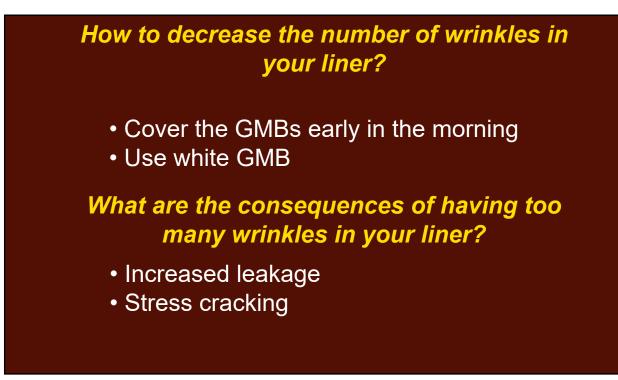
14



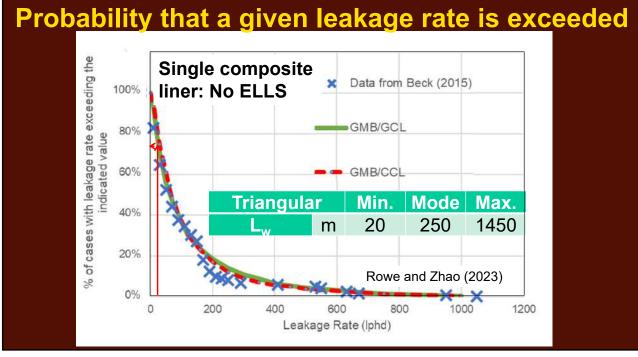

16

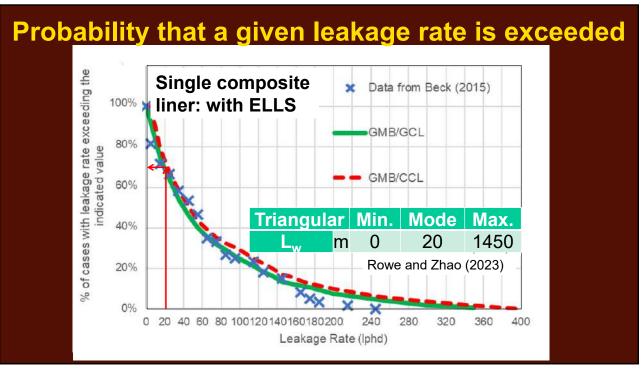

17

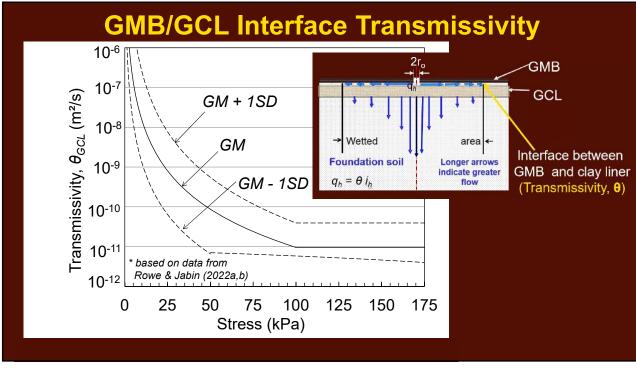



20

22


Probability of a holed-wrinkle (Good CQA but no ELLS)								
Wrinkle length Probability (m) (%)								
1 Sector	≥ 100	70 🥨	R. Thiel)					
1	≥ 200	50	The All					
C De	≥ 500	15	- A					
210	≥ 1000	4 🚪						
(Based on New York leakage data; Beck 2015) Rowe (2018)								
Messag	Message: You will grossly underestimate leakage if you do not consider holes in wrinkles							


Warning


- The material presented is not complete in and of itself; it is intended only to provide direction aNd examples. Examine published sources for more complete information.
- The reader is responsible for assessing the relevance and usefulness for any project
- Typical ranges are for typical conditions many non-typical conditions exist.
- Average or typical values may have 50% above and 50% below

25

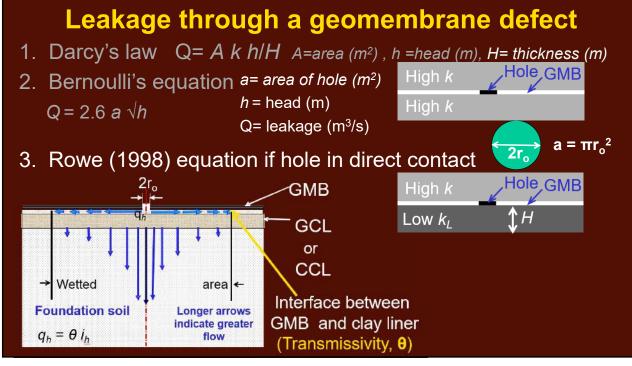
26

28

Example liner parameters	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥150 kPa bottom liner³	
Head on liner, <i>h</i> (m)	5	0.15	0.2	
Hole area, a (mm²)	100	100	100	
Holed wrinkle length, L _w (no ELLS) (m)	530	530	530	
Holed wrinkle length, L _w (ELLS) (m)	430	430	430	
Holed wrinkle average width, 2b (m)	0.2	0.2	0.1	
<i>Liner thickness, GCL, H_{GCL}</i> (m)	0.015	0.01	0.007	
Hydraulic conductivity below wrinkle, k _{bGCL} (m/s)	2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	
Hydraulic conductivity below wrinkle, k _{aGCL} (m/s)	5x10 ⁻¹¹	2x10 ⁻¹⁰	3x10 ⁻¹¹	
Hydraulic conductivity MGCL, k _{GCL} (m/s)	5x10 ⁻¹¹	5x10 ⁻¹¹	5x10 ⁻¹¹	
GMB/GCL interface transmissivity, θ_{GCL} (m ² /s)	1x10 ⁻⁸	3x10 ⁻⁹	3x10 ⁻¹¹	
<i>Liner thickness, CCL, H_{GCL}</i> (m)	0.6	0.6	0.6	
Hydraulic conductivity below wrinkle, k _{CCL} (m/s)	1x10 ⁻⁹	1x10 ⁻⁸	2x10 ⁻¹⁰	
GMB/GCL interface transmissivity, θ_{CCL} (m ² /s)	1x10 ⁻⁶	1x10 ⁻⁷	2x10 ⁻⁹	

¹ Submerged and about 0.3 m cover soil; ² About 1 m cover soil; ³ MSW Landfill about 0.3 m gavel drainage layer.

29

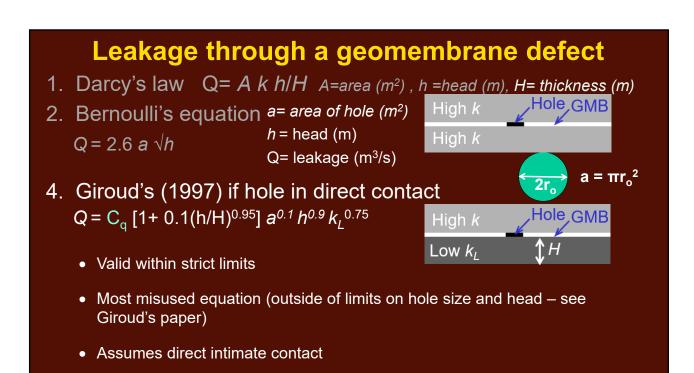

Leakage through a clay liner alone

1. Darcy's law Q = A k h/H A=area (m²), h =head (m), H= thickness (m)

	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥150 kPa bottom liner³
Head on liner, <i>h</i> (m)	5	0.15	0.2
<i>Liner thickness, GCL, H_{GCL}</i> (m)	0.015	0.01	0.007 m
<i>Hydraulic conductivity normal GCL, k_{GCL} (m/s)</i>	2x10 ⁻¹⁰	6x10 ⁻⁸ m/s	2x10 ⁻¹⁰ m/s
Leakage with Darcy Equation (lphd)	57,800	829,000	5,100
Hydraulic conductivity MGCL, k _{GCL}	5x10 ⁻¹¹ m/s	5x10 ⁻¹¹ m/s	5x10 ⁻¹¹ m/s
Leakage with Darcy Equation (lphd)	14,400	700	1300
Liner thickness, CCL, H _{GCL}	0.6 m	0.6 m	0.6 m
Hydraulic conductivity k _{CCL}	1x10 ⁻⁹ m/s	1x10 ⁻⁸ m/s	2x10 ⁻¹⁰ m/s
Leakage with Darcy Equation (lphd)	8,000	11,000	230

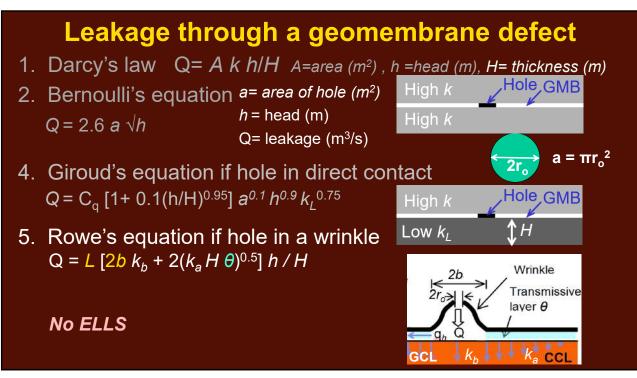
30

Leakage the 1. Darcy's law Q= 2. Bernoulli's equat Q= 2.6 <i>a</i> √ <i>h</i>	A k h/H A=are	ea (m²) , h =ł ble (m²) H H	nead (m), H= t igh kH igh k	
		σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥ 150 kPa bottom liner³
Head on liner, <i>h</i> (m)		5	0.15	0.2
Leakage with Darcy Equation, MC	GCL alone (lphd)	14,400	700	1,300
Leakage with Darcy Equation, CC	L alone (lphd)	8,000	11,000	230
Hole area, a (mm²)	Hole area, a (mm²)		100	100
Leakage from Bernoulli's Eq. Q (I	phd)	51,000	8,900	10,300
			leakage poss is hole in a wr	


32

Rowe	Rowe (1998) equation if hole in direct contact								
Spread sheet: Data > what-if analysis>goal seek (dh/dr, 0, R)									
Input	Input	Input	Input	Input	\$O	Output	\$AA		
Hole radius r _o (m)	Permeability of liner k _L (m/s)	Thickness of Liner H _L (m)	h _w (m)	θ (m²/s)	Wetted radius R (m)	Q _{calculated} (L/d)	Goal Seek S <u>et</u> cell: Sa To yalue: O By changing cell: Sc OK Ch/dr	? X	
0.005642	5.00E-11	0.015	5	1.00E-08	7.544	4.667	<mark>0.00</mark>		
0.005642	2.00E-10	0.015	5	1.00E-08	3.804	5.268	0.00		
0.005642	2.00E-10	0.01	0.15	3.00E-09	0.808	0.059	0.00		
0.005642	6.00E-08	0.01	0.15	3.00E-09	0.065	0.166	0.00		
0.005642	3.00E-11	0.007	0.2	3.00E-11	0.243	0.001	0.00		
0.005642	3.00E-11	0.007	0.2	3.00E-11	0.243	0.001	0.00		
0.005642	1.00E-09	0.6	5	1.00E-06	31.452	560.33	0.00		
0.005642	1.00E-08	0.6	0.15	1.00E-07	0.814	3.60	0.00		
0.005642	2.00E-10	0.6	0.2	2.00E-09	0.919	0.092	0.00		

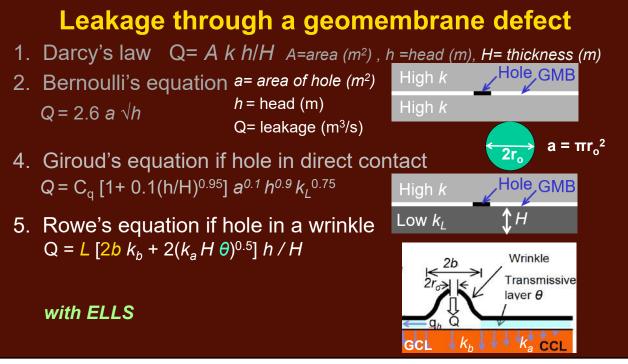
	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥ 150 kPa bottom liner³	
Head on liner, <i>h</i> (m)	5	0.15	0.2	
Leakage with Darcy Equation, MGCL alone (lphd)	14,400	700	1,300	
Hole area, a (mm²)	100	100	100	
Leakage from Bernoulli's Eq. Q (lphd)	51,000	8,900	10,300	
Liner thickness, <i>GCL, H_{GCL}</i> (m)	0.015	0.01	0.007	
Hydraulic conductivity, <i>k_{GCL}</i> (m/s)	2x10 ⁻¹⁰	6x10 ⁻⁸	3x10 ⁻¹¹	
GMB/GCL interface transmissivity, θ_{GCL} (m ² /s)	1x10 ⁻⁸	3x10 ⁻⁹	3x10 ⁻¹¹	
Leakage with Rowe (1998) Equation for DC (lphd)	≤ 5.3	< 0.2	0.001	
Liner thickness, CCL, H _{GCL} (m)	0.6	0.6	0.6	
Hydraulic conductivity below wrinkle, k _{CCL} (m/s)	1x10 ⁻⁹	1x10 ⁻⁸	2x10 ⁻¹⁰	
GMB/GCL interface transmissivity, θ_{CCL} (m ² /s)	1x10 ⁻⁶	1x10 ⁻⁷	2x10 ⁻⁹	
Leakage with Rowe (1998) Equation (lphd)	560	3.6	0.09	


¹ Submerged and about 0.3 m cover soil; ² About 1 m cover soil; ³ MSW Landfill about 0.3 m gavel drainage layer.

34

	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥ 150 kPa bottom liner³
Head on liner, <i>h</i> (m)	5	0.15	0.2
Leakage with Darcy Equation, MGCL alone (lphd)	14,400	700	1300
Leakage with Darcy Equation, CCL alone (lphd)	8,000	11,000	230
Hole area, a (mm²)	100	100	100
Leakage from Bernoulli's Eq. Q (lphd)	51,000	8,900	10,300
<i>Liner thickness, GCL, H_{GCL}</i> (m)	0.015	0.01	0.007 m
Hydraulic conductivity, k _{GCL} (m/s)	2x10 ⁻¹⁰	6x10 ⁻⁸	3x10 ⁻¹¹
GMB/GCL interface transmissivity, θ_{GCL} (m ² /s)	1x10 ⁻⁸	3x10 ⁻⁹	3x10 ⁻¹¹
Leakage with Rowe (1998) DC Eq. (lphd)	≤ 5.3	< 0.2	0.001
Leakage with Giroud (1997) DC Eq.(lphd)	na	14	0.06
Liner thickness, CCL, H _{GCL} (m)	0.6 m	0.6 m	0.6 m
Hydraulic conductivity below wrinkle, k _{CCL} (m/s)	1x10 ⁻⁹ m/s	1x10 ⁻⁸ m/s	2x10 ⁻¹⁰ m/s
GMB/GCL interface transmissivity, θ_{CCL} (m ² /s)	1x10 ⁻⁶ m ² /s	1x10 ⁻⁷ m²/s	2x10 ⁻⁹ m²/s
Leakage with Rowe (1998) DC Eq. (lphd)	560	3.6	0.09
Leakage with Giroud (1997) DC Eq. (lphd)	na	1.6(g)-8.9(p)	0.4(g)

36

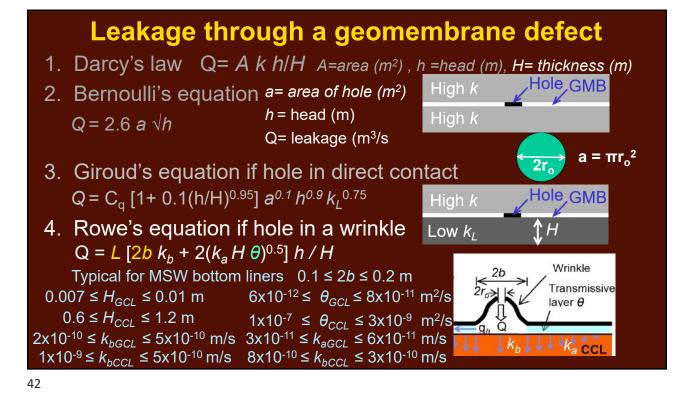

Example parameters – GCL	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥150 kPa bottom liner³	
Head on liner, <i>h</i> (m)	5	0.15	0.2	
Hole area, a (mm²)	100	100	100	
Holed wrinkle length, L _w (no ELLS) (m)	530	530	530	
Holed wrinkle average width, 2b (m)	0.2	0.15	0.1	
Leakage from Bernoulli's Eq. Q (lphd)	51,000	8,900	10,300	
<i>Liner thickness, GCL, H_{GCL} (</i> m)	0.015	0.01	0.007	
Hydraulic conductivity below wrinkle, k _{bGCL} (m/s)	2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	
<i>Hydraulic conductivity below wrinkle, k_{aGCL} (m/s)</i>	5x10 ⁻¹¹	2x10 ⁻¹⁰	3x10 ⁻¹¹	
GMB/GCL interface transmissivity, θ_{GCL} (m ² /s)	1x10 ⁻⁸	3x10 ⁻⁹	3x10 ⁻¹¹	
Leakage with Rowe (1998) DC Eq. (lphd)	≤ 5.3	< 0.2	0.001	
Leakage with Rowe (1998) wrinkle Equ. (lphd)	8,700	160 -13,200	60 -16,200	
Leakage with Darcy Equation, MGCL alone (lphd)	14,400	700	1,300	
Hydraulic conductivity of MGCL, k _{GCL} (m/s)	5x10 ⁻¹¹	5x10 ⁻¹¹	5x10 ⁻¹¹	
Leakage with Rowe (1998) wrinkle Equ. (lphd)	7,800	67	36	

38

Example parameters – CCL	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥ 150 kPa bottom liner³	
Head on liner, <i>h</i> (m)	5	0.15	0.2	
Hole area, a (mm²)	100	100	100	
Holed wrinkle length, L _w (no ELLS) (m)	530	530	530	
Holed wrinkle average width, 2b (m)	0.2	0.15	0.1	
Leakage from Bernoulli's Eq. Q (lphd)	51,000	8,900	10,300	
<i>Liner thickness, CCL, H_{GCL}</i> (m)	0.6	0.6	0.6	
Hydraulic conductivity below wrinkle, k _{CCL} (m/s)	1x10 ⁻⁹	1x10 ⁻⁸	2x10 ⁻¹⁰	
GMB/GCL interface transmissivity, θ_{CCL} (m ² /s)	1x10 ⁻⁶	1x10 ⁻⁷	2x10 ⁻⁹	
Leakage with Darcy Equation, CCL alone (Iphd)	8,000	11,000	230	
Leakage with Rowe (1998) DC Eq. (lphd)	560	3.6	0.09	
Leakage with Rowe (1998) wrinkle Equ. (Iphd)	21,000	3,000	60	

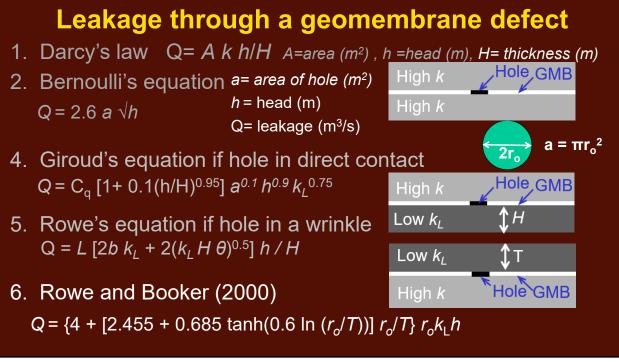
¹ Submerged and about 0.3 m cover soil; ² About 1 m cover soil; ³ MSW Landfill about 0.3 m gavel drainage layer.

39

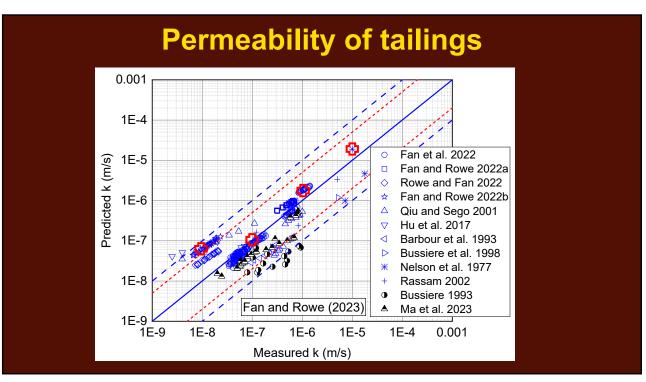


40

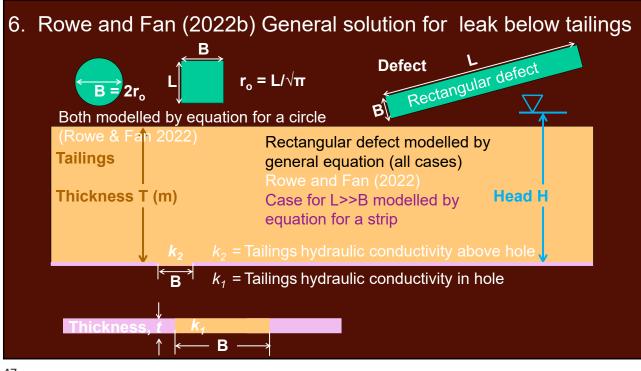
Example liner parameters	σ _{va} < 5 kPa Pond ¹	σ _{va} ~ 15 kPa Cover ²	σ _{va} ≥ 150 kPa bottom liner³	
Head on liner, <i>h</i> (m)	5	0.15	0.2	
Hole area, a (mm²)	100	100	100	
Holed wrinkle length, L _w (with ELLS) (m)	430	430	430	
Holed wrinkle average width, 2b (m)	0.2 0.15		0.1	
Leakage from Bernoulli's Eq. Q (Iphd)	51,000	8,900	10,300	
<i>Liner thickness, GCL, H_{GCL} (m)</i>	0.015	0.01	0.007	
Hydraulic conductivity below wrinkle, k _{bGCL} (m/s)	2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	6x10 ⁻⁸ to 2x10 ⁻¹⁰	
Hydraulic conductivity below wrinkle, k _{aGCL} (m/s)	5x10 ⁻¹¹	2x10 ⁻¹⁰	3x10 ⁻¹¹	
GMB/GCL interface transmissivity, θ_{GCL} (m ² /s)	1x10 ⁻⁸	3x10 ⁻⁹	3x10 ⁻¹¹	
Leakage with Rowe (1998) direct Equation (lphd)	≤ 5.3	< 0.2	0.001	
Leakage with Rowe (1998) wrinkle Equ. (lphd)	7,100	130 -10,800	50 -13,100	


¹ Submerged and about 0.3 m cover soil; ² About 1 m cover soil; ³ MSW Landfill about 0.3 m gavel drainage layer.

41

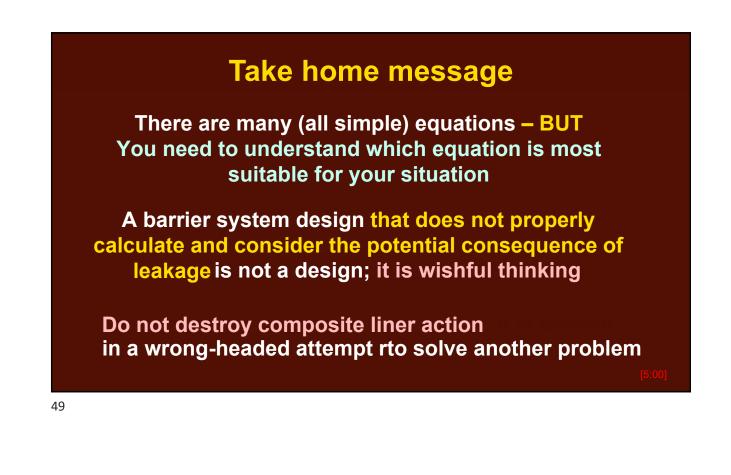


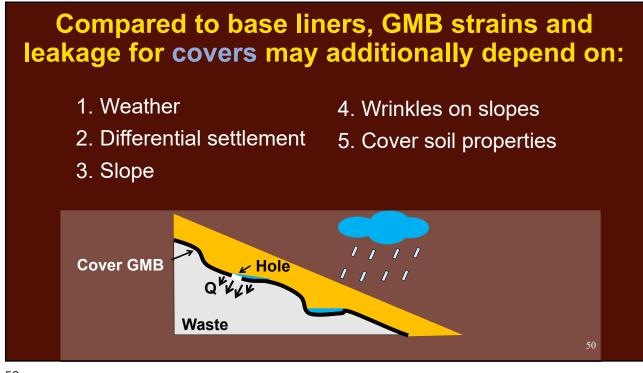
43

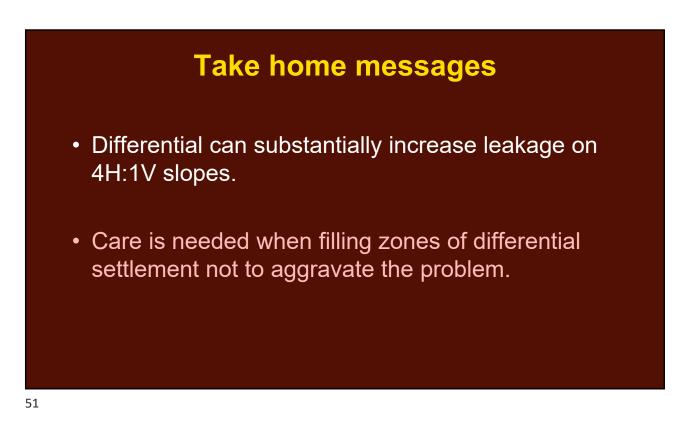

44

Leakage through a geomembrane defect in TSF

Head on liner, <i>h</i> (m)	50	50	50	50	50	50
Tailings thickness, <i>H</i> (m)	48	48	48	48	48	48
Hole area, a (mm²)	100	100	100	100	100	100
Hydraulic conductivity of tailings at hole, k_T (m/s)	0	1x10 ⁻⁴	1x10⁻⁵	1x10 ⁻⁶	1x10 ⁷	1x10⁻ ⁸
Leakage from Rowe-Booker Eq. (2000) (lphd)	162,000	9,750	975	97.5	9.75	0.975
Leakage from Rowe-Fan Eq. (2022a) (lphd)	162,000	6,720	672	67.2	6.7	0.67
Head on liner, <i>h</i> (m)	50	100	150	200	250	300
Tailings thickness, <i>H</i> (m)	48	98	148	198	248	298
Hole area, a (mm²)	100	100	100	100	100	100
Hydraulic conductivity of tailings at hole, k_T (m/s)	1x10 ⁻⁶					
Leakage from Rowe-Booker Eq. (2000) (lphd)	97.5	195	292	390	487	585
Leakage from Rowe-Fan Eq. (2022) (lphd)	67.2	134	202	269	512	745


46




Leakage through a geomembrane defect in TSF

Head on liner, <i>h</i> (m)	50	50	50	50	50	50
Tailings thickness, <i>H</i> (m)	48	48	48	48	48	48
Hole area, a (mm²)	100	100	100	10,000	10,000	10,000
Hole length (m)	0.01	0.1	1	0.1	1	10
Hole width (m)	0.01	0.001	0.0001	0.1	0.01	0.001
Hydraulic conductivity of tailings at hole, k_T (m/s)	1x10 ⁻⁶					
Leakage from Rowe-Fan Eq. (2022b) (lphd)	71	98	164	1,020	1,670	6,580
Head on liner, <i>h</i> (m)	50	50	50	50	300	300
Tailings thickness, <i>H</i> (m)	48	48	48	48	298	298
Hole area, a (mm²)	100,000	100,000	100,000	100,000	100,000	100,000
Hole length (m)	0.316	0.1	0.01	0.001	0.316	0.001
Hole width (m)	0.316	1	10	100	100,000	100
Hydraulic conductivity of tailings at hole, k_T (m/s)	1x10 ⁻⁶					
Leakage from Rowe-Fan Eq. (2022b) (lphd)	3,330	4,220	12,400	72,100	19,900	327,000

48

