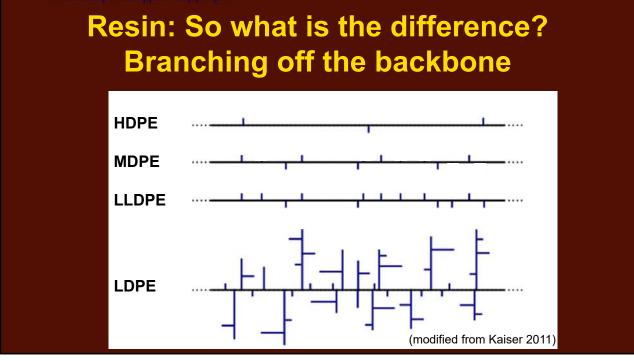


2

What defines a PE Geomembrane?

- Both LLDPE and HDPE are polyolefins (C_nH_{2n}) with a polyethylene backbone:
- -C H C H C H C H C H ...

ASTM D833:


- HDPE has a density $\rho \ge 0.941 \text{ g/cm}^3$
- MDPE has a $0.926 \le \rho \le 0.940 \text{ g/cm}^3$
- LLDPE has a density of 0.919 $\leq \rho \leq 0.925$ g/cm³
- LDPE has a density ρ < 0.919 g/cm³
- GMB density is very blunt instrument


LLDPE	HDPE
 94-97% PE resin 2-3% carbon black 0.25-2% antioxidants 	 95-98% PE resin 2-3% carbon black 0.25-1% antioxidants

• Vary in crystallinity

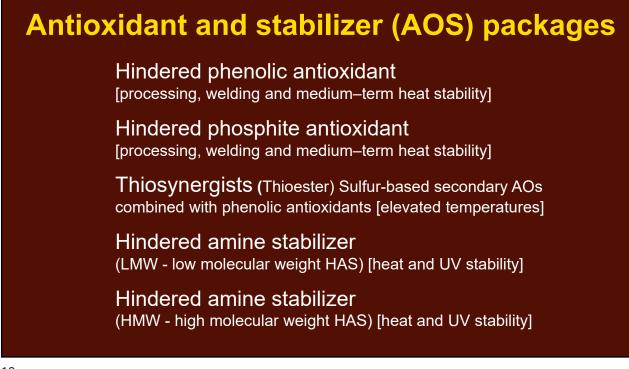
- Carbon black provides protection against UV
- Antioxidants/stabilizers protect against oxidation and UV

3

Resin: Modern HDPE

- Mostly is medium density resin (suspect that in some cases LLDPE may have been blended in)
- Lower GMB crystallinity
- Initial stress crack resistance (SCR_o) much higher than for old HDPE
- SCR_o > 500 hours, often > 1000 hours, sometimes > 10,000 hours
- Equilibrium SCR_m maybe much less than SCR_o

Specifications for HDPE and LLDPE GMBs

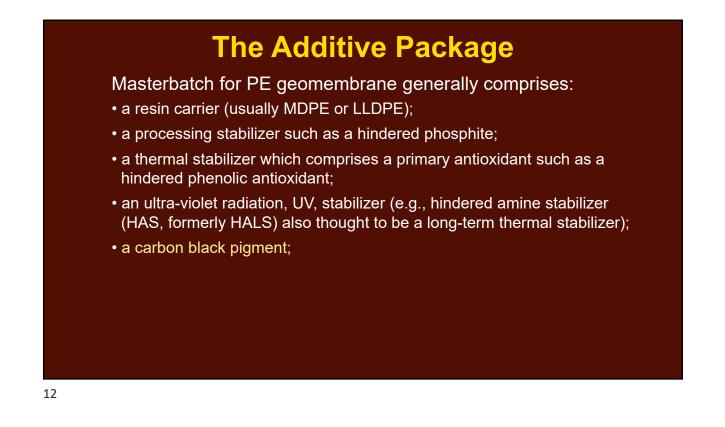

Property	Specific	cation
	LLDPE	HDPE
GMB Density	≤ 0.939 g/cm³	> 0.94 g/cm³
Resin Density	≤ 0.926 g/cm³	> 0.932 g/cm ³
Carbon black content	2-3%	2-3%
Stress crack resistance	Not specified (high)	> 500 hours
	GRI-GM 17	GRI-GM 13

7

The Additive Package

Masterbatch for PE geomembrane generally comprises:

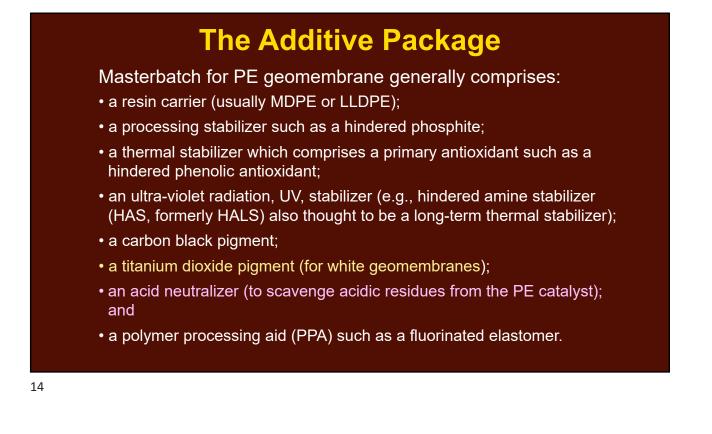
- a resin carrier (usually MDPE or LLDPE);
- a processing stabilizer such as a hindered phosphite;
- a thermal stabilizer which comprises a primary antioxidant such as a hindered phenolic antioxidant;
- an ultra-violet radiation, UV, stabilizer (e.g., hindered amine stabilizer (HAS, formerly HALS) also thought to be a long-term thermal stabilizer);


10

Antioxidant and stabilizer (AOS) packages

What you really need to know:

- Some of these compounds will diffuse out or be consumed faster than others.
- It is not just the compounds but, in some cases, the relative proportions of compounds that affect long-term performance(more to come on this).
- There is a limit to how much a geomembrane can accommodate once this limit is exceeded excess AOS will exsolve and can be manifest by rapid OIT depletion and poor weldability of the material.
- Effect of high molecular weight HAS may decrease with GMB thickness (more to come on this).
- Initial OIT values may be useful for CQC/CQA but do not tell you much about long-term performance.



Carbon black

The choice of carbon black matters!

- 60 nm N660 carbon black is too coarse for optimum UV screening (leading to failures from UV-related degradation).
- Smaller carbon black particle size
 - improves UV resistance
 - increase specific surface area,
 - requires more antioxidants/stabilizers to be added to the resin to compensate for the proportion of additives adsorbed by carbon black particles' high surface area.
- N330 grade is most used for geomembranes but is also prone to agglomeration
- extruder must provide good dispersive and distributive mixing

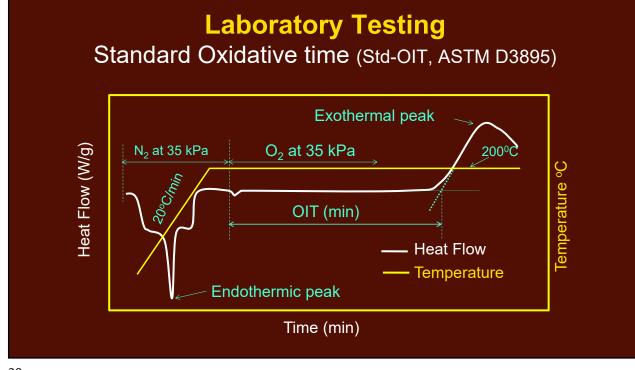
15

Preliminary Selection - (GRI-GM13)

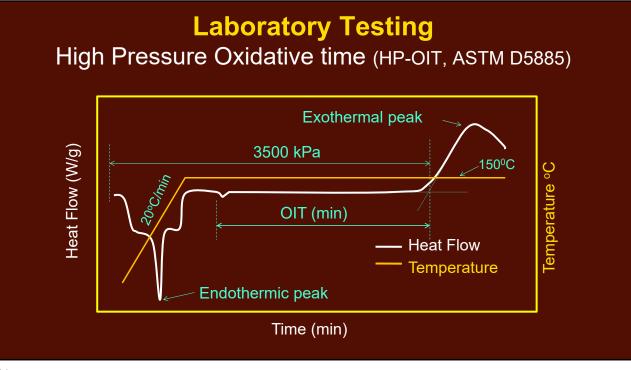
Properties	Test							
	Method	0.75 mm	1.00 mm	1.25 mm	1.50 mm	2.00 mm	2.50 mm	3.00 mm
Thickness - (min. ave.) - mm	D5199	nom.	nom.	nom.	nom.	nom.	nom.	nom.
 lowest individual of 10 values - % 		-10	-10	-10	-10	-10	-10	-10
Formulated Density (min. ave.) - g/cc	D 1505/D 792	0.940	0.940	0.940	0.940	0.940	0.940	0.940
Tensile Properties (1) (min. ave.)	D 6693							
 yield strength - kN/m 	Type IV	11	15	18	22	29	37	44
 break strength - kN/m 		20	27	33	40	53	67	80
 yield elongation - % 		12	12	12	12	12	12	12
 break elongation - % 		700	700	700	700	700	700	700
Tear Resistance (min. ave.) - N	D 1004	93	125	156	187	249	311	374
Puncture Resistance (min. ave.) - N	D 4833	240	320	400	480	640	800	960
Stress Crack Resistance (2) - hr.	D 5397	500	500	500	500	500	500	500
	(App.)	(C)-(C)-	2:220		1220-004	15,1542-4	2.55	
Carbon Black Content (range) - %	D 4218 (3)	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0
Carbon Black Dispersion	D 5596	note (4)	note (4)	note (4)	note (4)	note (4)	note (4)	note (4)
Oxidative Induction Time (OIT) (min. ave.) (5)			11				P	
(a) Standard OIT - min.	D 8117	100	100	100	100	100	100	100
— or —	10000000		1000 C	(2003)	108993	10 22 P.C	A 329/21	25553
(b) High Pressure OIT - min.	D 5885	400	400	400	400	400	400	400
Oven Aging at 85°C (5), (6)	D 5721		Lances 1	15.85	1000000	1		
(a) Standard OIT (min. avc.) - % retained after 90 days	D 8117	55	55	55	55	55	55	55
or								
(b) High Pressure OIT (min. ave.) - % retained after 90 days	D 5885	80	80	80	80	80	80	80
UV Resistance (7)	D 7238	12201220100	1000 00.V	0.000	1004231-525	100000000000000000000000000000000000000	12222 1021	100.02
(a) Standard OIT (min. ave.)	D 8117	N. R. (8)	N.R. (8)	N.R. (8)	N.R. (8)	N.R. (8)	N.R. (8)	N.R. (8)
-or-	D 2002							
(b) High Pressure OIT (min. ave.) - % retained after 1600 hrs (9)	D 5885	50	50	50	50	50	50	50

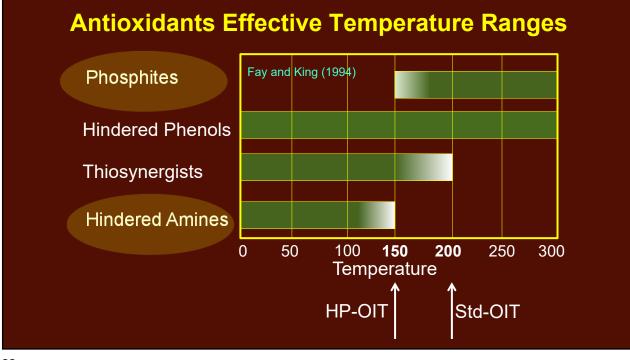
2		
Properties	Test Value	
	1.50 mm	
Thickness - mils (min. ave.)	nom. (mil)	
 lowest individual of 10 values 	-10%	
Density (min.)	0.940 g/cc	
Tensile Properties (1) (min. ave.)		
 yield strength 	22 kN/m	
 break strength 	40 kN/m	
 yield elongation 	12%	
 break elongation 	700%	Revised from
Tear Resistance (min. ave.)	187 N	200 hrs
Puncture Resistance (min. ave.)	480 N	
Stress Crack Resistance (2)	500 hr.	Ųto 300 hrs
Carbon Black Content - %)in 2003 and (
	2.0-3.0%	
Carbon Black Dispersion	note (4)	to 500 hrs in
Oxidative Induction Time (OIT) (min. ave.) (5)	100	Nov. 2014
(a) Standard OIT — or —	100 min.	
(b) High Pressure OIT	400 min.	
Oven Aging at 85°C (5), (6)		- Has not
(a) Standard OIT (min. ave.) - % retained after 90 days	55%	changed
— or —		Ŭ V
(b) High Pressure OIT (min. ave.) - % retained after 90 days	80%	since
UV Resistance (7)	Sector and a sector of	GRI-GM13
(a) Standard OIT (min. ave.)	N.R. (8)	
- or $-$	500/	Issued in
(b) High Pressure OIT (min. ave.) - % retained after 1600 hrs (9)	50%	June 1997
	L <u>I</u>	

17

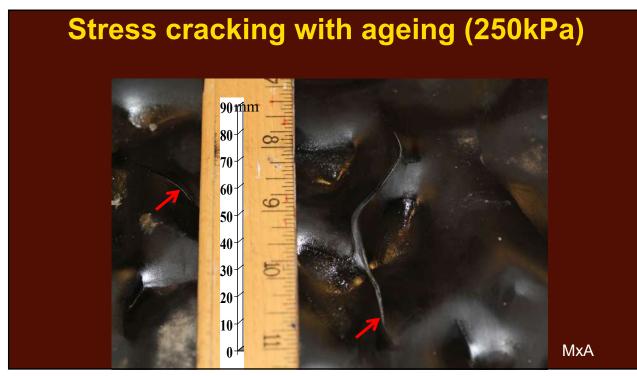


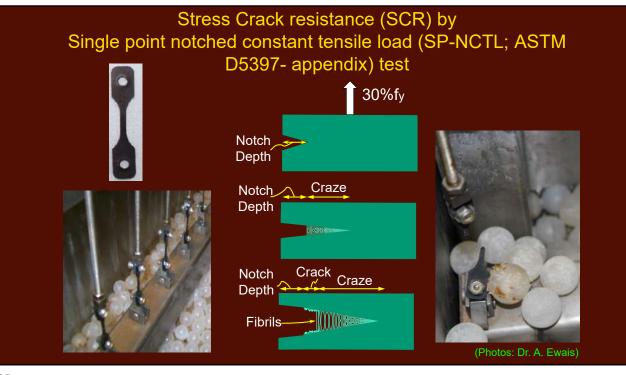
Property		Value	Indication for
1a. Std-OIT (min)	AND	>100 A	mount of antioxidant
% retained after 90 c	lays at 85ºC in air	55%	Antioxidant stability
OR			
1b. HP-OIT (min)	AND	>400 A	mount of antioxidan
	lays at 85ºC in air	80%	Antioxidant stability


18

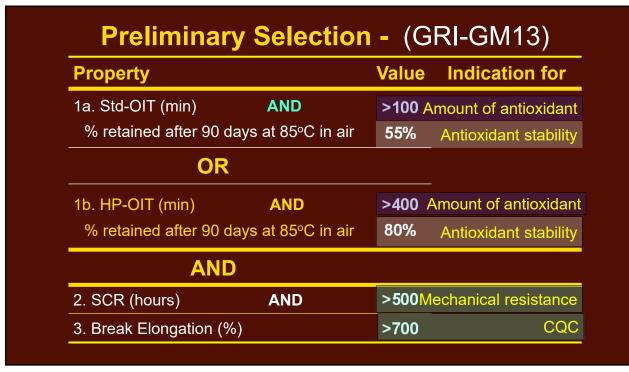

	Std-OIT	HP-OIT
Temperature	200°c	150°c
Pressure	35 kPa	3500 kPa

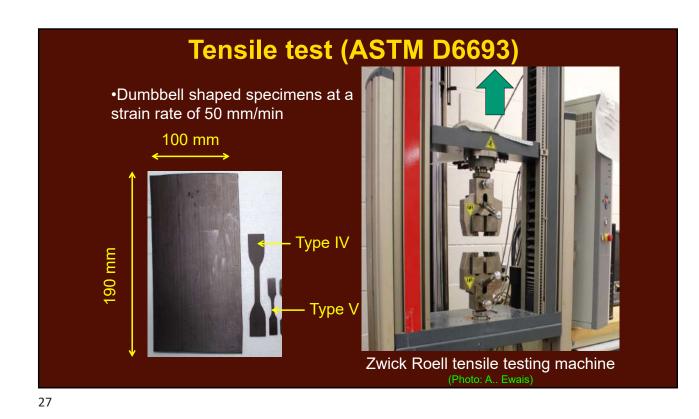
 Some antioxidant are volatilized at high temperatures and can not be detected by Std-OIT.

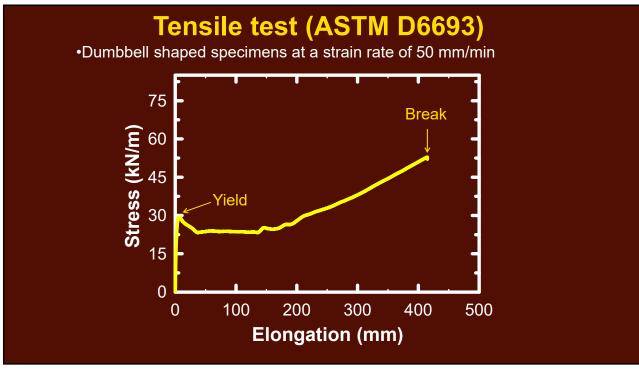

20



22


Property		Value Indication for
1a. Std-OIT (min)	AND	>100 Amount of antioxidant
% retained after 90	days at 85ºC in air	55% Antioxidant stability
OF	R	
1b. HP-OIT (min)	AND	>400 Amount of antioxidan
% retained after 90	days at 85ºC in air	80% Antioxidant stability
AN	D	
2. SCR (hours)	AND	>500 Mechanical resitance


24



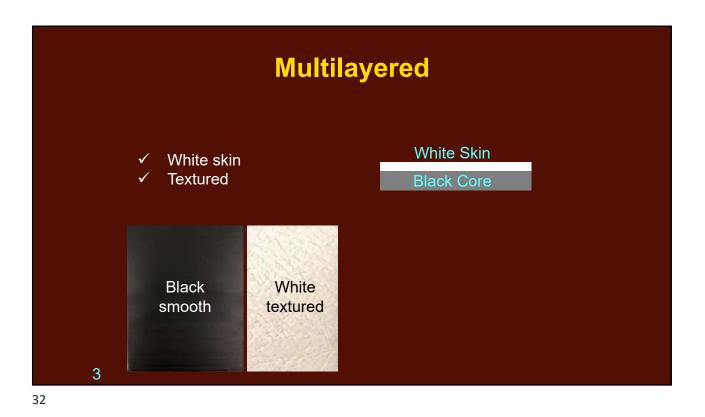
25

26

Not to be copied or used for any purpose other than personal education

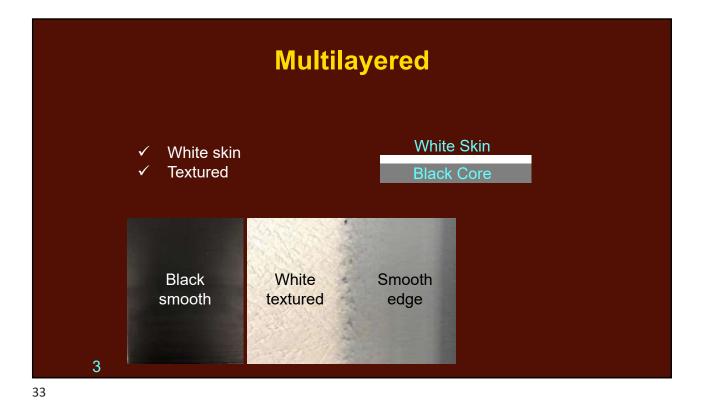
© R. Kerry Rowe, Queen's University, Kingston, Canada 14

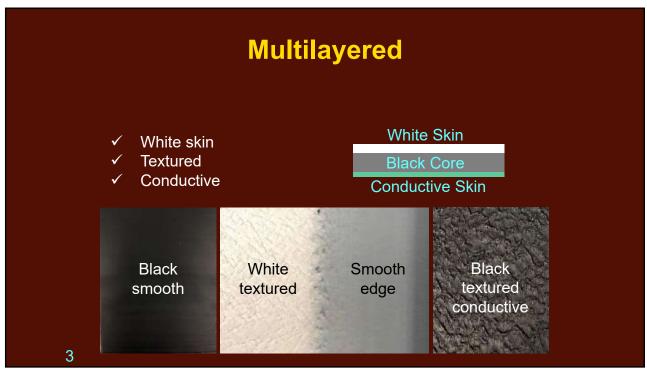
Property (2 mm thick)		Specif	ication
		LLDPE	HDPE
Break strength (kN/m)	Smooth	53	53
	Textured	21	26
Break elongation (%)	Smooth	800	700
	Textured	250	100
These parameters h	ave no direct performance		with field


Specifications for HDPE and LLDPE GMBs

Property (2 mm thick)		Specifi	cation
	-	LLDPE	HDPE
Break strength (kN/m)	Smooth	53	53
	Textured	21	26
Break elongation (%)	Smooth	800	700
	Textured	250	100
Standard OIT (min)	(*)	100 (35%)	100 (55%)
	(or)		
High pressure OIT (min) (*)	400 (60%)	400 (80%)

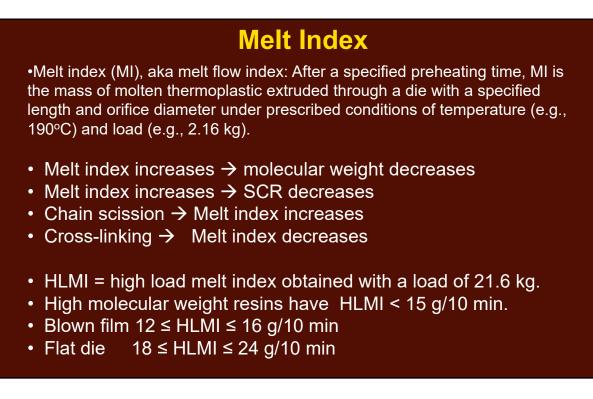
30




31

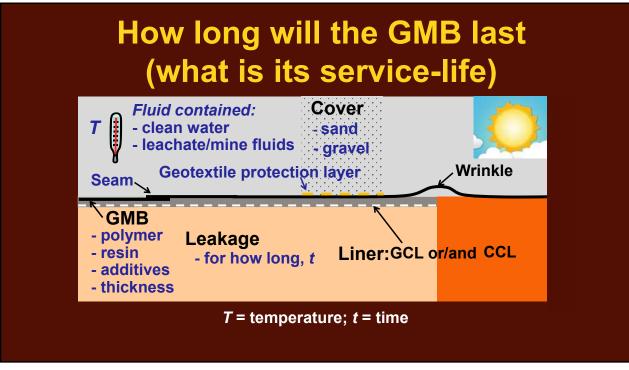
Not to be copied or used for any purpose other than personal education

© R. Kerry Rowe, Queen's University, Kingston, Canada 16



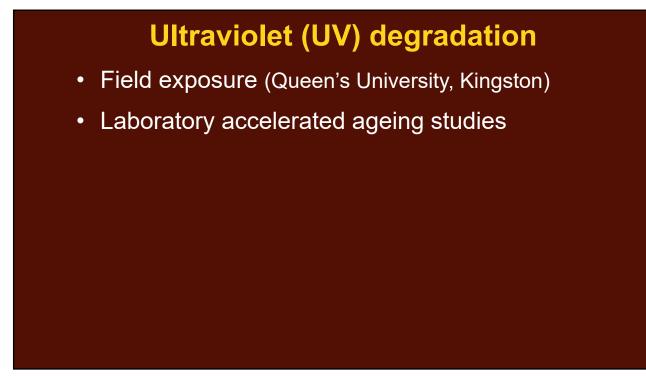
Is a GMB that meets requirements of GRI-GM13 suitable for my landfill or mining application?

- Maybe, maybe NOT
- Generally, want Std-OIT > 150 -160 min
- Want SCR_m (after 90 days ageing at 55° C) \geq 500 hours
- If you need more than 150-year service-life (SL), you need a GMB that has been shown through immersion testing in a simulated MSW leachate to have projected SL > required SL


35

36

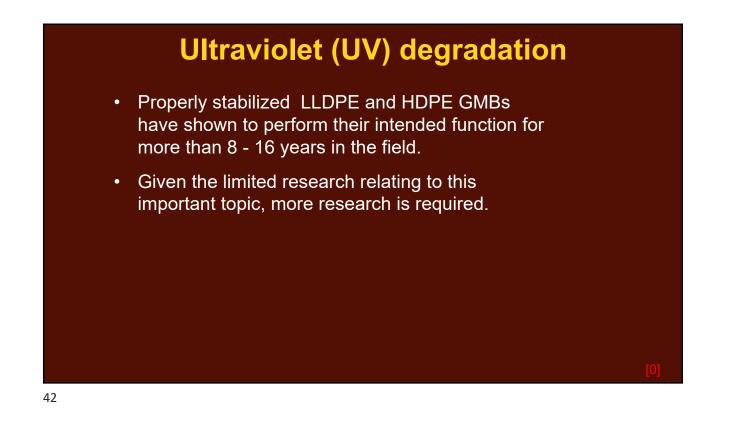
37



38

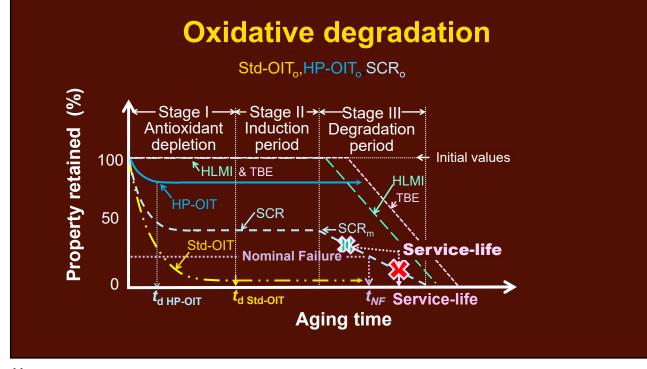
Modes of long-term degradation for PE geomembranes

- Biological degradation
- Ultraviolet (UV) degradation



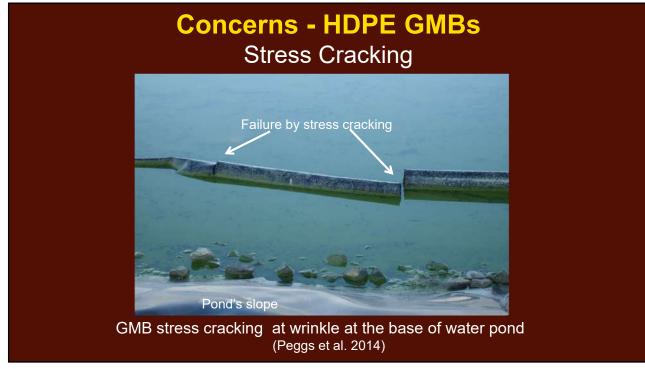
Ultraviolet (UV) degradation

- Some have reported that antioxidants deplete faster from stabilized LLDPE GMBs than stabilized HDPE GMBs HOWEVER our tests have faster depletion from some HDPE than some LLDPE
- Difficult to generalize about UV degradation of LLDPE vs HDPE since it depends on the specific antioxidant/stabilizer package, carbon black, and resin
- Loss of strength and elongation in Koerner et al. (2008) laboratory study faster for 1mm LLDPE than 1.5mm HDPE for GMBs tested but it was inferred that the service life of exposed LLDPE (1 mm) and HDPE (1.5 mm) GMBs is greater than 28 years for Texas weather conditions.



Modes of long-term degradation for HDPE geomembranes

- Biological degradation
- Ultraviolet (UV) degradation
- Extraction (e.g., antioxidants)
- Oxidation

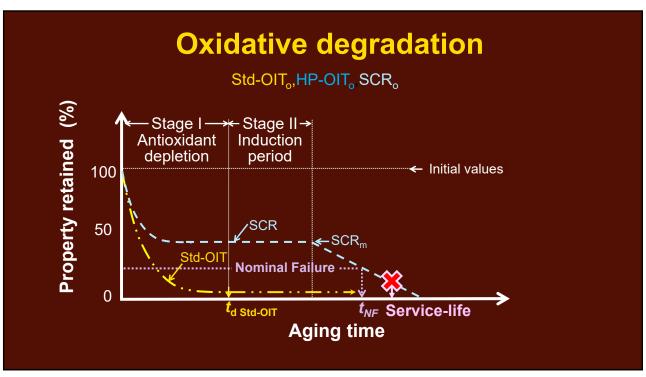


Symptoms of degradation

The following mechanical property changes are generally observed with geomembrane degradation (often in order shown)

- A decrease in stress crack resistance below SCR_m.
- A change in high load melt index (HLMI) this may be an increase or decrease.
- A decrease in % elongation at failure.
- (Sometimes an increase and then) A decrease in strength at failure (i.e., tensile stress at break).I
- An increase in brittleness (i.e., general loss of ductility).

45



47

Some Recently Studied GMBs

Meets GRI-GM13?		~	\checkmark				~
Generic Name	MxTB W20	MxTD WC20	MzTA W20	MyTA WC20	MyTB W20	Myl WC20	MyJ W20
Std-OIT (minutes)	285	220	185	165	165	165	165
% Std-OIT retained @90 days	56%	53%	38%	57%	42%	58%	53%
HP-OIT (minutes)	960	705	1920	800	915	780	1490
% HP-OIT retained @90 days	66%	85%	95%	92%	94%	94%	86%

48

Evolving formulations and multilayered GMBs

Stress crack resistance (SCR)

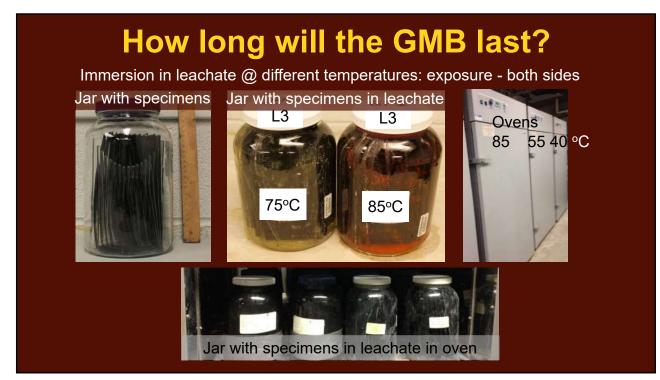
- a critical design parameter for HDPE GMBs
- initial value: SCR_o
 - not representative of the true stress crack resistance

Reduction at 22°C in laboratory

Year	SCR (hours)	This decrease in SCR is the GMB tending
2005	1430 SCR_o	to this stable natural state with the stress
2008	910	crack resistance SCR_m and does not
2011	720	represent degradation.
2017	530	
SCR _m	390 aged at 5	55° C for 3 months SCR _m /SCR _o = 0.27

50

Estimate of Stress Crack Resistance after
morphological change (SCR _m)


	MxTB W20	MxTD WC20	MzTA W20	Myl WC20	MyJ W20
SCR _o (hrs)	1600	>11000	670	1600	350
SCR _m (hrs)	500	5400	330	900	260
$\rm SCR_m/SCR_o$	~30%	~50%	~50%	~60%	~70%

51

	HDPE						LLDPE
	MyA 20	MxA 20	MxA 15	MyC 15	MxC 15	MxC 20	LxD 15
SCR _o (hrs)	5,200	1,300	1,400	1,000	800	950	19,000
SCR _m (hrs)	2,000	600	400	1,000	390	340	6,000
SCR _m /SC R _o	38%	~50%	~30%	~100%	~50%	~35%	~32%
	Some LLDPE have a yield some do not						

52

53

How long will the GMB lasts

Depends on

• GMB used – (polymer and antioxidant/stabilizers)

Time to nominal failure, *t_{NF}*, 1.5mm HDPE in simulated MSW leachate at 85°C

GMB	t_{NF} (months)	Relative t _{NF} (-)
MxA	14	1.0
MxB	19	1.4
MyC	31	2.2

Abdelaal & Rowe (2015)

54

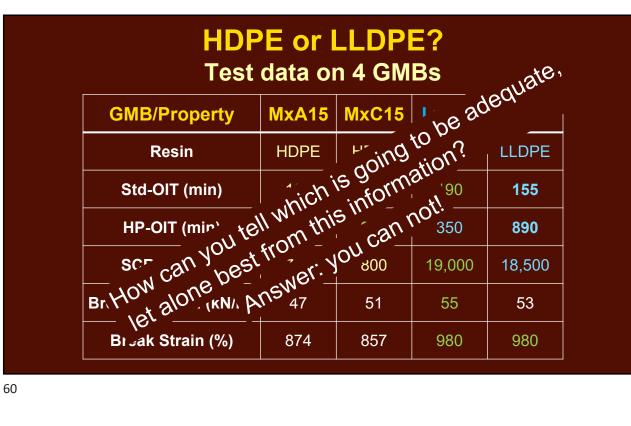
How long will the GMB lasts

Depends on

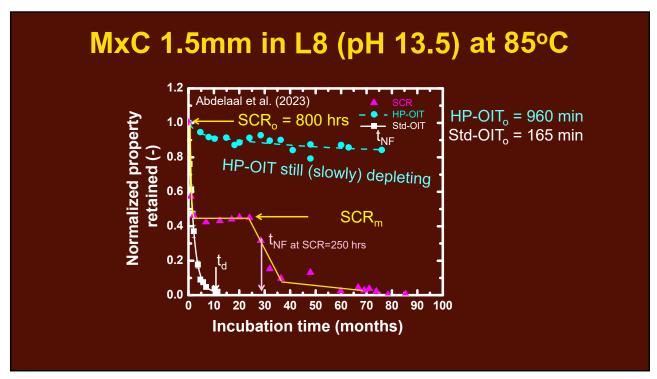
- GMB used (polymer and antioxidant/stabilizers)
- The exposure conditions
 - Elements (UV; variable temperature; damage)
 - Chemical composition of fluid in contact with GMB

Chemical characteristics that can affect PE aging

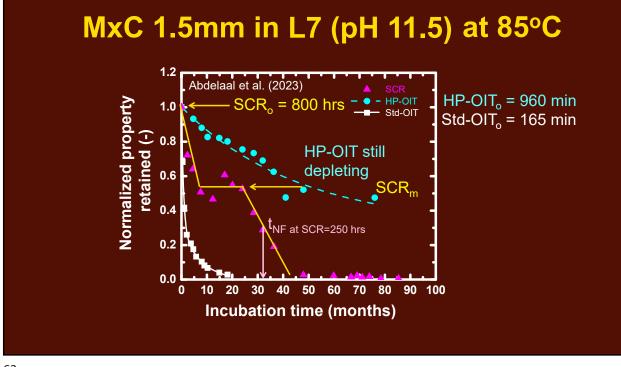
- Surfactant (in MSW leachate and some heap leach solutions) on OIT depletion
- Salts (not on OIT but on later degradation)
- pH (effect depends on antioxidant package)
- Chlorine (e.g., in treated water)


56

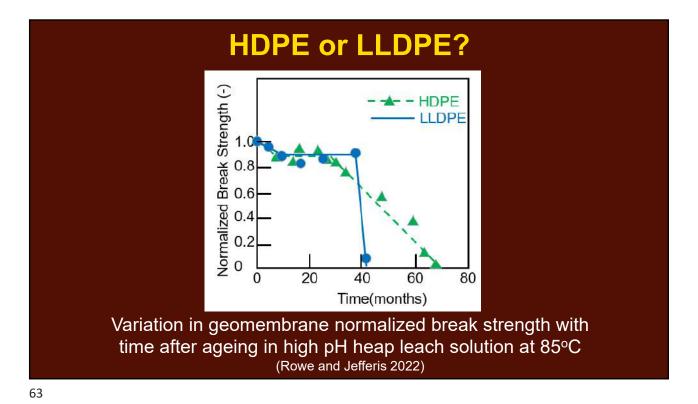
LIIEC	t of fluid or failure, t _N			iiiiiai	
Leachate		Stage I (years)	t _{NF} (years)	t _{NF} Ratio (-)	
MSW-L3	Full-VFAs	24	53	1.0	
MSW-L1	Full MSW	28	59	1.1	
MSW-L2	Surfactant only	21	83	1.6	
	nd high pH accelerate salts affect Stages II			n (shortens	
GMB with be	est resistance in one f	iluid may no	ot be best i	n another fl	
Abdelaal, Rowe & Islam (2014) 1.5 mm thick HDPE GMB MxC15					

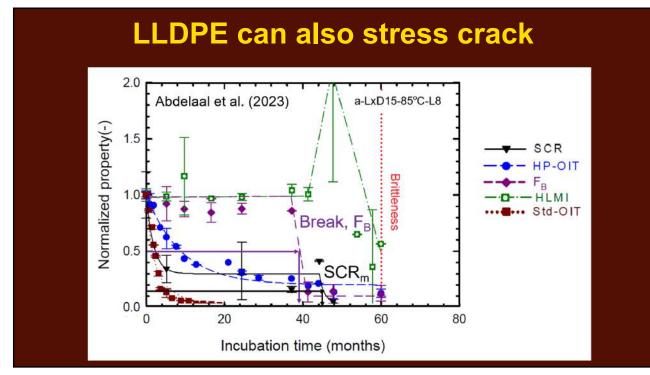

Effect of fluid on time to A depletion, <i>t_d</i> , at 30°C (Stage					
Leachate	xTD	хТВ	zTA	уТВ	
LLW-L7	280	1100	550	700	
LLW-L9	280	1000	540	630	
MSW-L3	70	370	200	320	
	Rounded to 2 significant figures				
Zafari et a.l (2023) 2 mm thick HDPE					

58


HDPE or LLDPE? Test data on 4 GMBs						
GMB/Property MxA15 MxC15 LxD15 LxE15						
Resin	HDPE	HDPE	LLDPE	LLDPE		
Std-OIT (min)	100	160	190	155		
HP-OIT (min)	260	960	350	890		
SCR _o (Hours)	720	800	19,000	18,500		
Break strength (kN/m)	47	51	55	53		
Break Strain (%)	874	857	980	980		

60

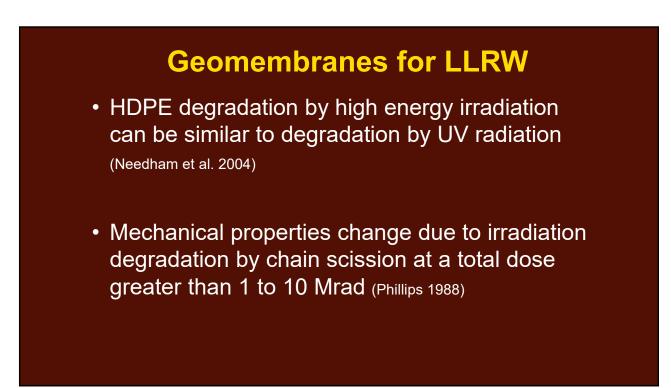

61

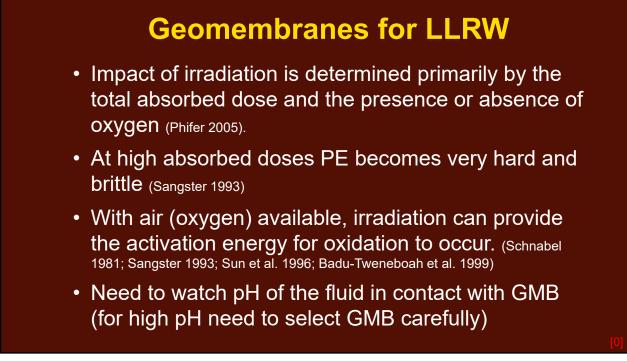


62

Not to be copied or used for any purpose other than personal education

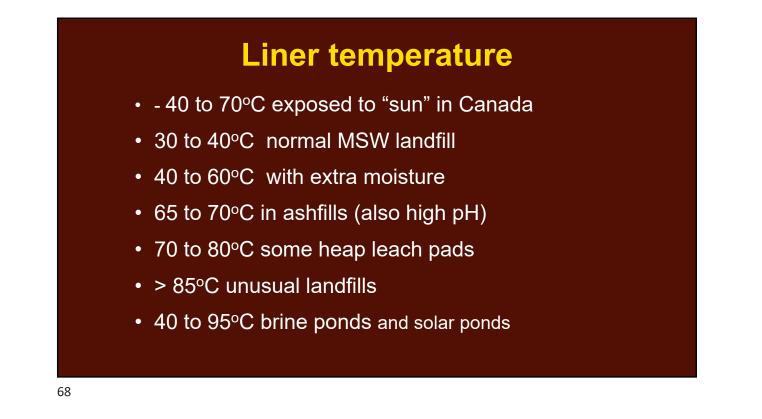
© R. Kerry Rowe, Queen's University, Kingston, Canada 31





Not to be copied or used for any purpose other than personal education

© R. Kerry Rowe, Queen's University, Kingston, Canada 32



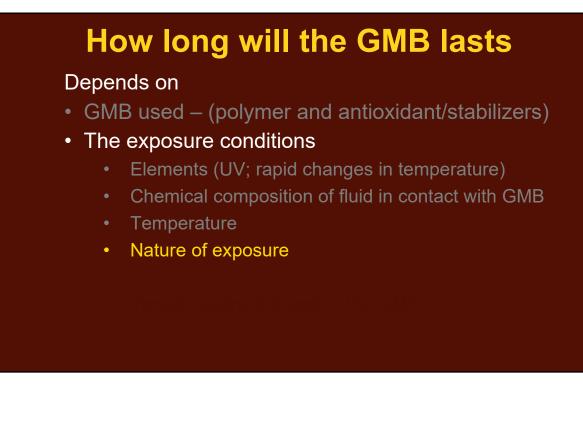
65

How long will the GMB lasts

Depends on

- GMB used (polymer and antioxidant/stabilizers)
- The exposure conditions
 - Elements (UV; rapid changes in temperature)
 - Chemical composition of fluid in contact with GMB
 - Temperature

Effect of temperature on time to
nominal failure, t _{NF}

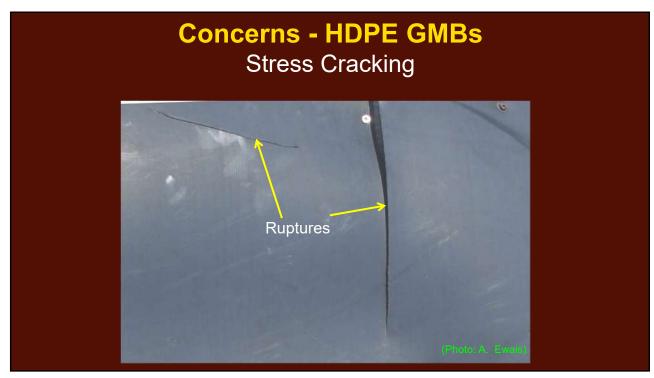

Immersed in MSW-L1 (an aggressive solution)

Geomembrane:	MyC 1.5mm	MyA 2.0mm			
Temperature °C	t _{NF} (years)				
60	9	13			
50	15	36			
40	30	120			
30	60	430			

Could be shorter or longer for other GMBs and exposure conditions

MyC: 9 years data, Abdelaal, Rowe & Islam (2014) MyA: 17 years data, Ewais & Rowe (unpublished)

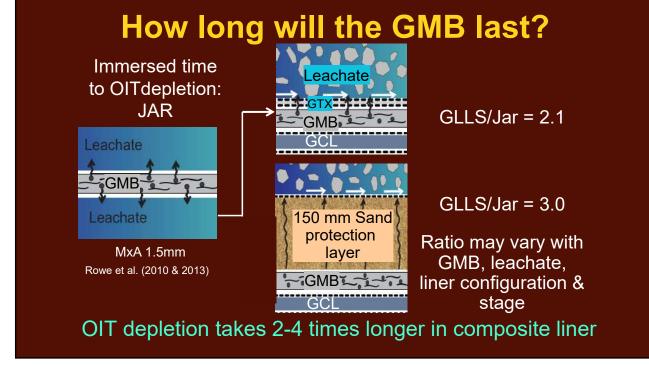
69



Not to be copied or used for any purpose other than personal education

70

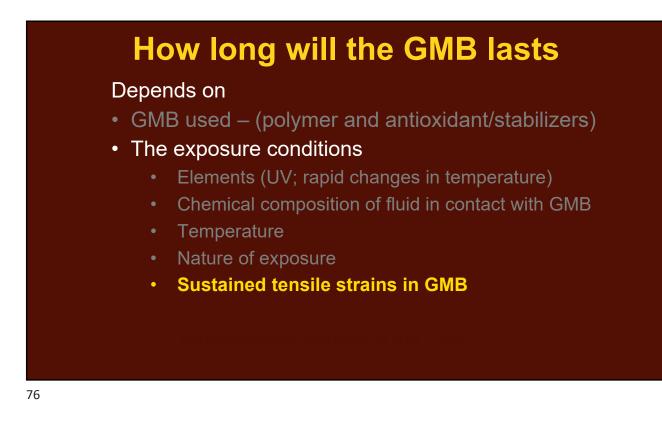
71



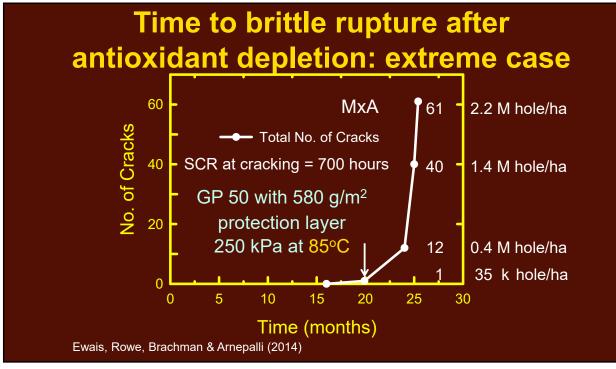
72

Not to be copied or used for any purpose other than personal education

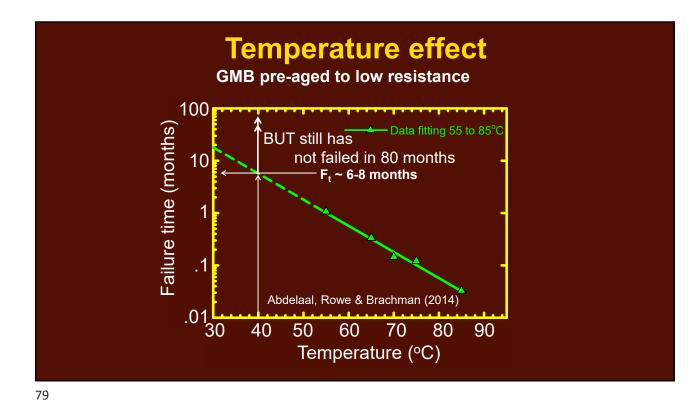
© R. Kerry Rowe, Queen's University, Kingston, Canada 36

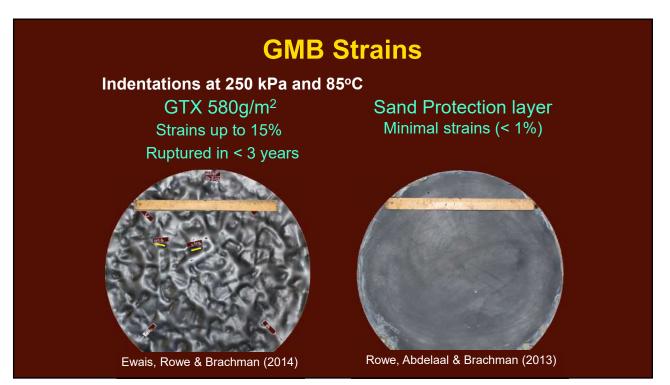


74


Not to be copied or used for any purpose other than personal education

simul	ated MSW landf	ill leachate	
Temperature ∘C	Immersed t _{NF} (years)	Composite liner t _{NF} (years)	
60	13	50	
35	220	880	
		nd negligible tensile strain tes, and liner configurations	




77

78

Not to be copied or used for any purpose other than personal education

80

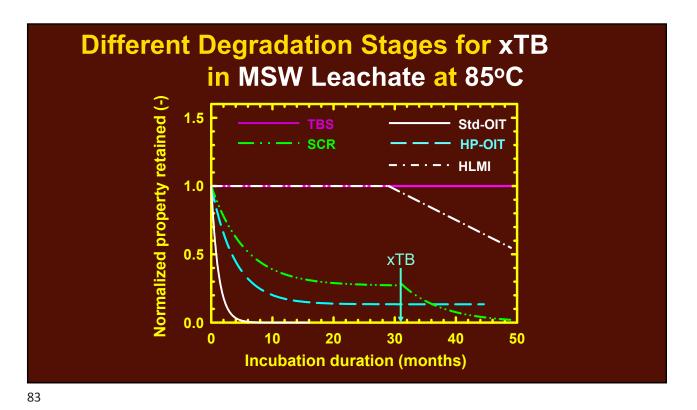
Not to be copied or used for any purpose other than personal education

Smooth Black 1.5-mm HDPE GMBs				
Property	GMB1	GMB2	GMB3	GMB4
SCR_o (hours)	7,600	8,100	6,500	2,800
SCR _m (hours)	2070	1370	1010	646
Std-OIT (min)	179	206	209	254
HP-OIT (min)	1,220	950	1,260	1,410
<i>t_{NF}</i> (field) @ 30°C	350-510	280-750	280-750	310-580
<i>t_{NF}</i> (field) @ 40°C	130-140	100-180	90-180	120-180

All GMBs contain HALS All GMBs produced from same manufacturer

81

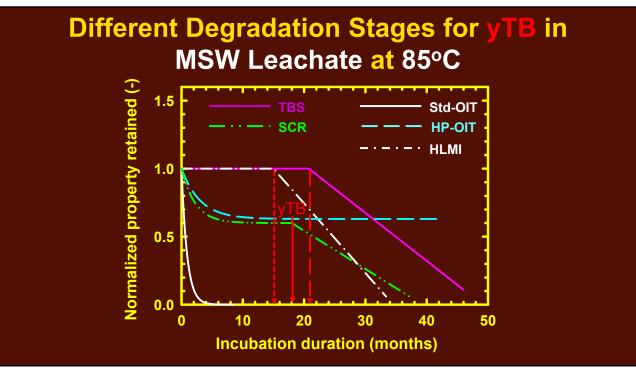
Estimated time to nominal failure (years) in a composite liner in MSW leachate

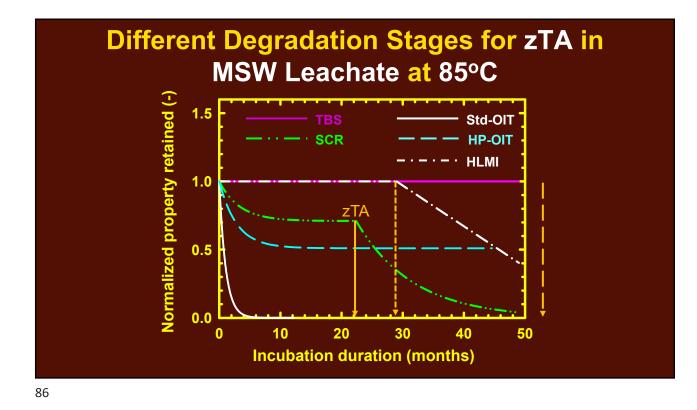

(rounded to 2 significant digits; Zafari et al. 2023)

(°C)	2	хТВ	xTD	z٦	ΓA	уТ	A	уТВ
(-0)	Min.	Exp.	Exp.	Min.	Exp.	Min.	Exp.	Exp.
20	2600	6400	1100	1600	3500	1800	5500	4000
30	790	1500	370	520	900	600	1300	970
35	450	750	230	300	470	350	660	500
40	260	390	140	180	250	220	350	260
45	150	200	92	110	140	130	180	140
50	92	110	61	69	79	83	100	77

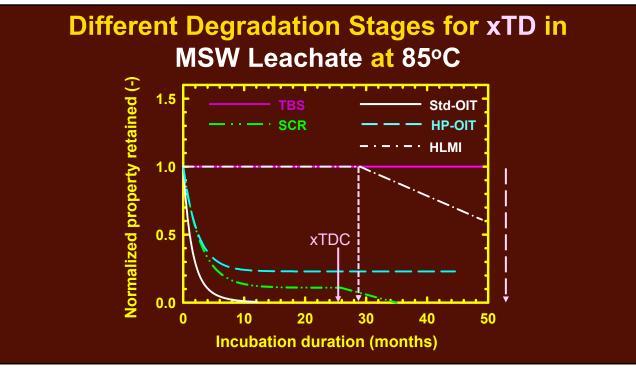
82

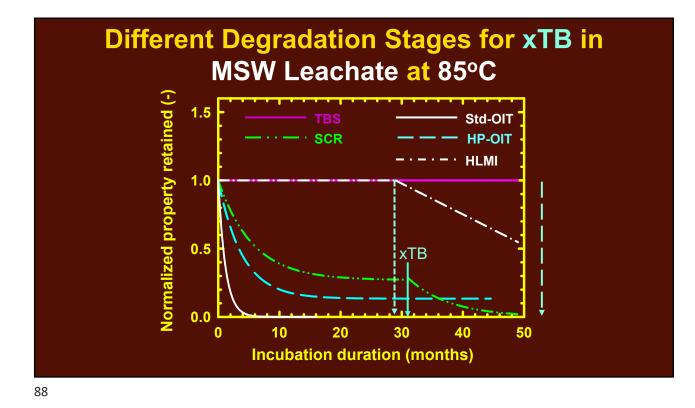
Not to be copied or used for any purpose other than personal education

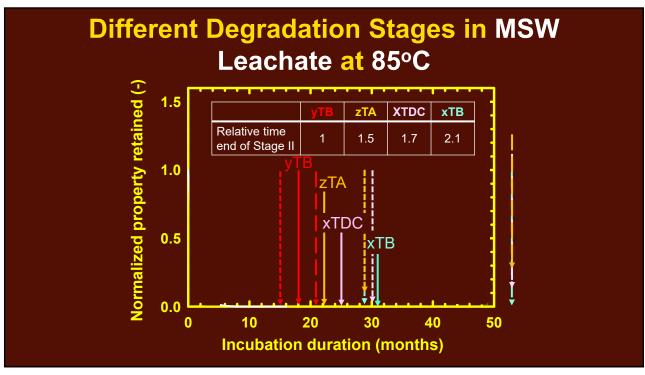

Clinton and Rowe (unp)

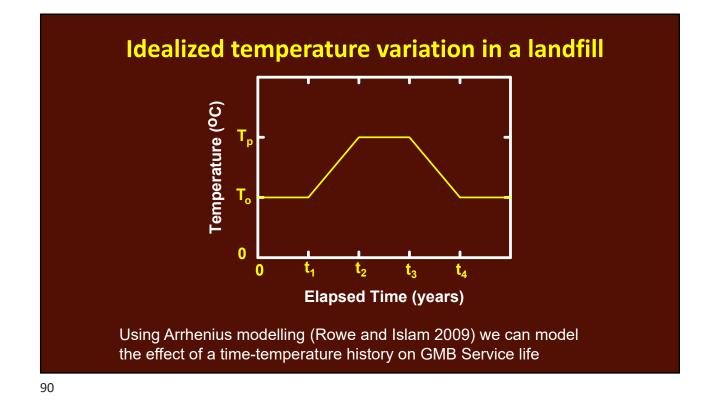

Different Degradation Stages for xTB & xTDC in MSW Leachate at 85°C 1.5 **Normalized property retained** Std-OIT SCR HP-OIT HLMI 1.0 0.5 xTDC xTB 0.0 10 20 30 40 50 Λ Incubation duration (months)

84


Not to be copied or used for any purpose other than personal education

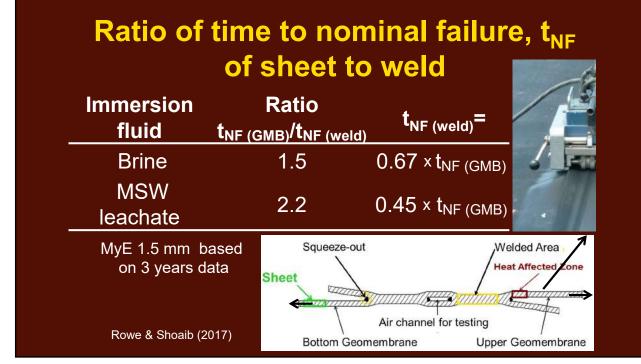

85


Not to be copied or used for any purpose other than personal education


87

Not to be copied or used for any purpose other than personal education

89


Not to be copied or used for any purpose other than personal education

How long will the GMB lasts

Depends on

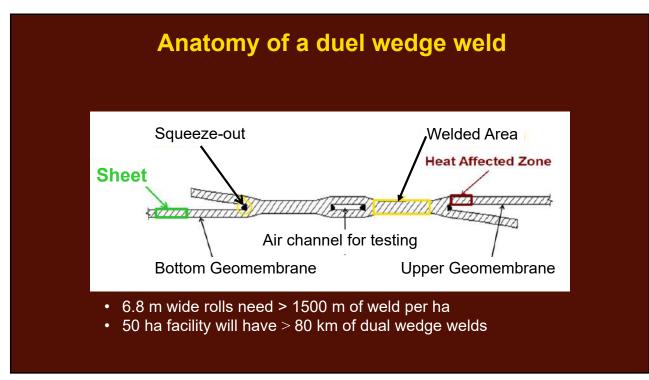
- GMB used (polymer and antioxidant/stabilizers)
- The exposure conditions
 - Elements (UV; rapid changes in temperature)
 - Chemical composition of fluid in contact with GMB
 - Temperature
 - Nature of exposure
 - Sustained tensile strains in GMB
 - Seams (welds)

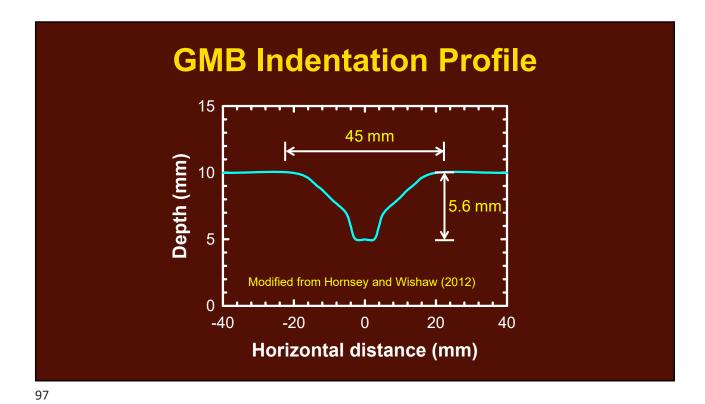
91

92

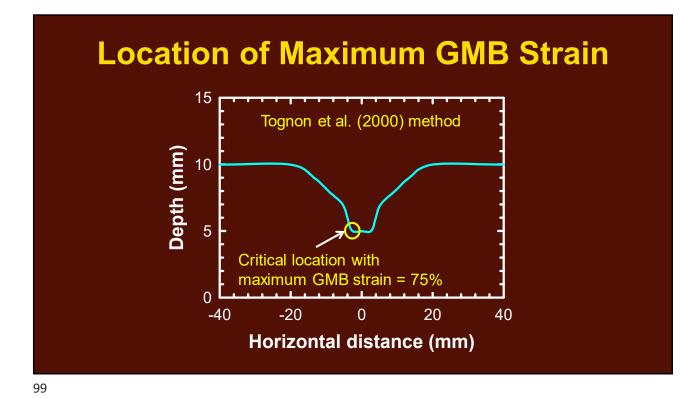
Not to be copied or used for any purpose other than personal education

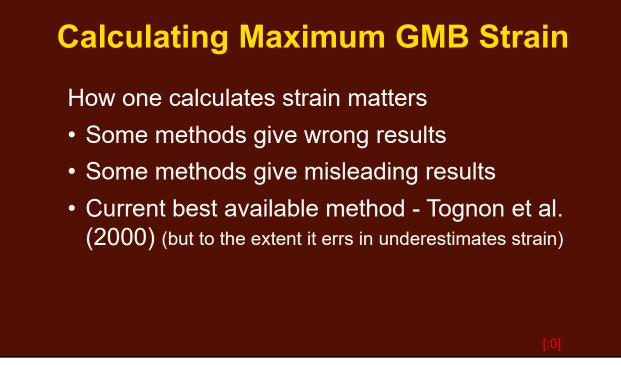
Weld summary


- Typically > 1500 m of weld/ha
- Welds are a critical location with respect to GMB service-life
- Time to failure needs more investigation but is known to depend on GMB, leachate, and temperature
- Potential for further increased leakage reduced by
 - minimizing covered wrinkles/waves
 - using composite liner with GCL


Sources of Tensile Strain (Stress) in Buried GMB Liner

i. gravel in an overlying drainage layer,

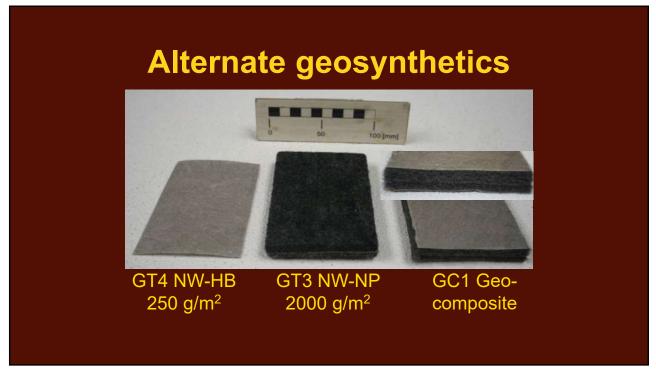

96



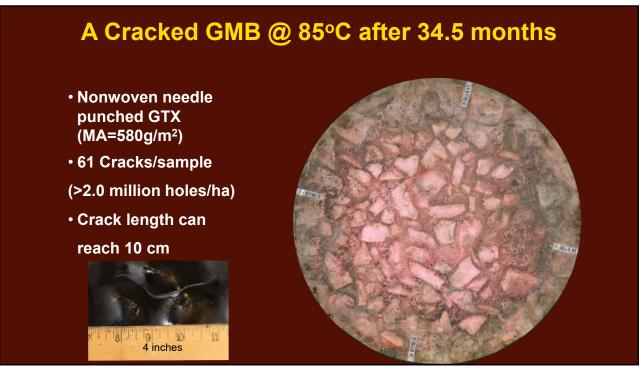
Calculated Maximum GMB Strains

Strain calculation method	Max. GMB strain
ASTM arch elongation method	0.016% (wrong)
BAM arch elongation method	4.1%
LFE-2 incremental strain (3 mm)	13%
LFE-2 incremental strain (1 mm)	42%
Tognon et al. (2000) (1 mm)	75%

98

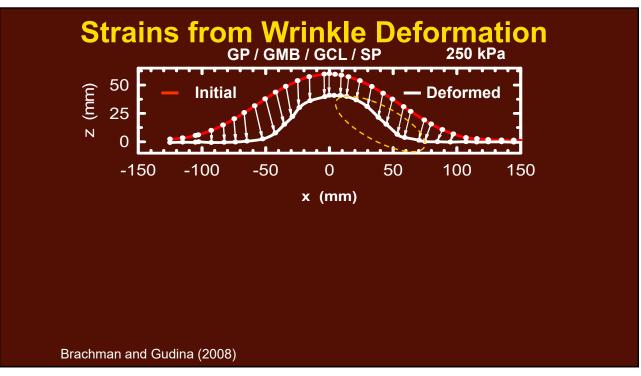

Not to be copied or used for any purpose other than personal education

How much strain is too much?


Our test have ruptures at 5% (unp.)

Recommended maximum strain for low level radioactive waste landfill: Base 3%, Side slope 4%, Cover 5% (Rowe et al. 2019)

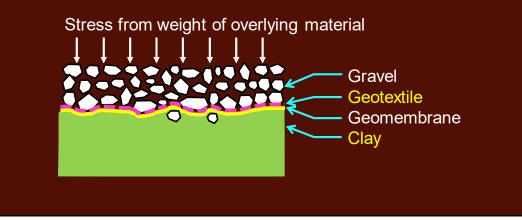
101

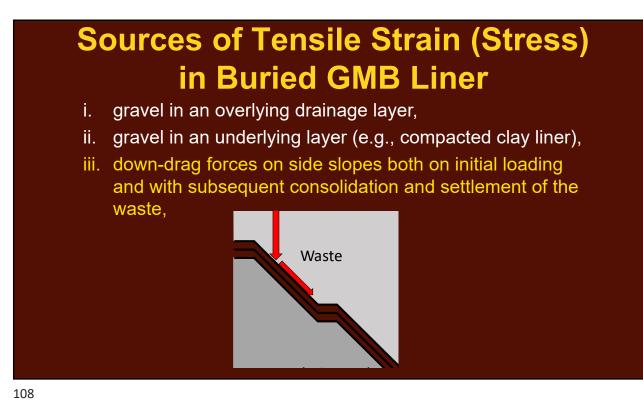


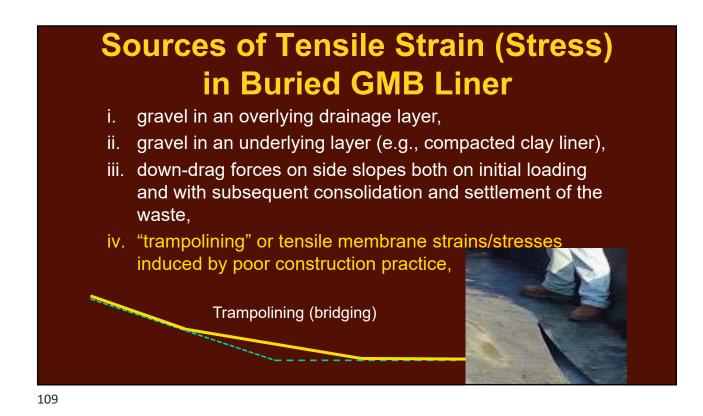
102

Maximum Strain: GMB / CCL		
Gravel	Protection layer	Maximum strain
25 mm	None	16%
50 mm	None	32%
25 mm	570 g/m² GTX	13%
50 mm	540 g/m² GTX	15%
25 mm	2240 g/m ² GTX	4.5%
50 mm	2200 g/m² GTX	8.2%
	MB on a compacted clay line 1ºC; Period of sustained load	

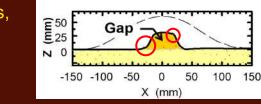
104


Maximum GMB Strains GP / GMB / GCL / SP at 250 kPa


Tensile Strain (%)		
o Wrinkle	With Wrinkle	
17	18	
10	-	
7.7	10	
5.5	7.5	
0.2	0.3	
	ger and Müller 2003;	
Rov	ve et al. 2019)	
	l <u>o Wrinkle</u> 17 10 7.7 5.5 0.2 005); 3% (See	

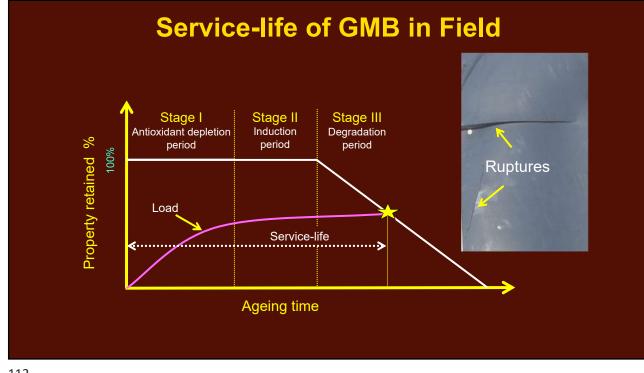

106

- i. gravel in an overlying drainage layer,
- ii. gravel in an underlying layer (e.g., compacted clay liner),



Sources of Tensile Strain (Stress) in Buried GMB Liner

- i. gravel in an overlying drainage layer,
- ii. gravel in an underlying layer (e.g., compacted clay liner),
- iii. down-drag forces on side slopes both on initial loading and with subsequent consolidation and settlement of the waste,
- iv. "trampolining" or tensile membrane strains/stresses induced by poor construction practice,
- v. wrinkles,



Not to be copied or used for any purpose other than personal education

Sources of Tensile Strain (Stress) in Buried GMB Liner

- i. gravel in an overlying drainage layer,
- ii. gravel in an underlying layer (1). compacted clay liner),
- iii. down-drag forces personal operation of the subseque consolidation of settlement of the waste,
- iv. "trampolining" or tensile contraine strains/stresses induced by poor crowtion practice,
- v. wrinkles,
- vi. differential settlement of suit () ve/waste with time, and
- vii. any permanent stranger of by seismic events

111

Not to be copied or used for any purpose other than personal education

GMB service-life depends on

• GMB used

Manufacture & design

- The exposure conditions Design, construction & operations
 - Elements (UV; rapid changes in temperature)
 - Chemical composition of fluid in contact with GMB
 - Temperature
 - Nature of exposure
 - Sustained tensile strains in GMB
 - Seams/Welds

Ranges from years to many centuries

113

