

2

PFAS: What are they?

Per- and PolyFluoroAlkyl Substances Let's start with an example: Perfluorooctanoic Acid (PFOA)

3

4

6

Effect of Uncertainty re S_{af} on PFOA **Concentration in Aquifer** Thermoplastic polyurethane (TPU) Rowe et al. (2023) T (°C) $D_g (m^2/s)$ $P_g (m^2/s)$ GMB S_{af} Cp tp (-) (ng/l) (yr) 3.2×10⁻¹⁴ TPU 50 3.2×10⁻¹¹ 0.001 3.1 280 TPU 50 3.2×10⁻¹⁴ 3.2×10⁻¹² 0.01 3.1 280 3.2×10⁻¹⁴ TPU 50 3.2×10⁻¹³ 0.1 3.1 280 3.3×10⁻¹⁴ TPU 3.3×10⁻¹⁴ 50 1 3.2 280 $c_0 = 750 \text{ ng/L}; q_0 = 0.15 \text{ m/yr}$ $P_q = S_{gf} \cdot D_g$ EPA drinking water limits for PFOA is now 4 ng/L

8

Effect of Temperature on PFOA Concentration in Aquifer Thermoplastic polyurethane (TPU)								
GMB	T (°C)	P _g (m²/s)	D _g (m²/s)	S _{gf} (-)	c _p (ng/l)	t _p (yr)		
TPU	50	3.3×10 ⁻¹⁴	3.3×10 ⁻¹⁴	1	3.2	280		
TPU	40	1.6×10 ⁻¹⁴	1.6×10 ⁻¹⁴	1	1.7	300		
TPU	35	1.1×10 ⁻¹⁴	1.1×10 ⁻¹⁴	1	1.2	300		
TPU	30	0.8×10 ⁻¹⁴	0.8×10 ⁻¹⁴	1	0.9	300		
c _o = 750 EPA drii	ng/L; q _o = nking wate	0.15 m/yr r limits for PFC)A is now 4 ng/		P _g	$= S_{gf} \cdot D_g$		

PFOA and PFOS best estimate S_{af} and P_{a}
Literature values for other chemicals 23°Č

Not good diffusion barriers			Excellent diffus	ion ba	n barriers	
Contaminant	S _{gf} (-)	P _g (m²/s)	Contaminant	S _{gf} (-)	P _g (m²/s)	
PCE (0.75mm LLDPE) ¹	1250	2.5x10 ⁻¹⁰	PFOA (0.29mm EIA1)	1	≤1.8x10 ⁻¹⁶	
PCE (1.5mm TPU) ¹	900	1.6x10 ⁻¹⁰	PFOS (0.29mm EIA1)	1	≤1.3x10 ⁻¹⁶	
PCE (1.5mm HDPE) ¹	850	1.0x10 ⁻¹⁰	PFOA (0.26mm EIA3)	1	≤1.2x10 ⁻¹⁶	
Toluene (LLDPE) ²	350	7.7x10 ⁻¹¹	PFOS (0.26mm EIA3)	1	≤1.1x10 ⁻¹⁶	
Benzene (LLDPE) ²	200	4.4x10 ⁻¹¹	PFOS(0.1mm LLDPE)	4	≤ 3.3x10 ⁻¹⁷	
PFOS (0.3mm TPU)	1	7.6x10 ⁻¹⁴	PFOA (0.1mm EVOH)	1	≤ 1.3 x10 ⁻¹⁷	
Phenol (HDPE) ³	3.5	5.9x10 ⁻¹⁴	PFOS(0.1mm EVOH)	1	≤ 1.1 x10 ⁻¹⁷	
PFOA (0.3mm TPU)	1	5.6x10 ⁻¹⁵	PFOA(0.1mm LLDPE)	1.2	≤ 1.0 x10 ⁻¹⁷	
¹ Di Battista and Rowe 2020	33.5 $5.9x10^{-14}$ PFOS(0.1mm EVOH)1 $\leq 1.1 \times 10^{-17}$ TPU)1 $5.6x10^{-15}$ PFOA(0.1mm LLDPE) 1.2 $\leq 1.0 \times 10^{-17}$ Rowe 2020a, ² Di Battista and Rowe 2020b, ³ Saheli et al. 2016. $P_g = S_{gf} \cdot D_g$					

10

11

	PFOS	PFOA
Applied stress (kPa)	P _g	P_{g}
20	α	Ŷ
60	0.8 α	0.75 γ
150	0.5 α	0.5 γ

Contaminant	Applied stress (kPa)	D _g / D _{ref}
Chloride	22	1.0
PFOA	20	0.11
PFOS	20	0.11
Chloride	145	0.45
PFOA	150	0.05
PFOS	150	0.05

14

4. Emerging contaminants (PFAS) and composite liner performance

15

16

18

Double composite liner						
Secondary liner below GMB	ELLS	CQA	GM (lphd)	Median (Iphd)		
	No	Good	33	35		
GCL+1.75m AL	Yes	Good	21	24		
	Yes	Excellent	4	5		
	No	Good	35	37		
CCL+1 m AL	Yes	Good	23	26		
	Yes	Excellent	5	5		
	No	Good	13	13		
GCL+CCL+1 m AL	Yes	Good	8	9		
	Yes	Excellent	2	2		
				Rowe and Z		

Composite liners

Advance:

• Good understanding of leakage through single composite liners

Challenge:

- PFAS are hard to contain at levels acceptable in ground and surface water
 - Diffusion $f = P_q \cdot (\Delta c/H) = S_{qf} \cdot D_q \cdot (\Delta c/H)$
 - Advection (leakage)
 - Service life

21

	Predicted Depletion Time (years)						
	Immersed in Leachate			In Composite Liner			
Temp. (°C)	MSW leachate	PFAS + DI water	PFAS + MSW leachate	MSW leachate	PFAS + DI water	PFAS + MSW leachate	
40	50	27	18	170	90	63	
35	90	45	30	310	150	98	
30	170	78	46	580	270	160	
25	330	140	74	1100	460	250	
20	640	240	120	> 2000	830	410	
& Somuah (20	Caution: Numbers for 1 GMB and high (20 ppm) PFAS. Current studies examining different GMBs & effect of concentration						

22

Contaminants of emerging concern

- To have less than low probability of unacceptable impact requires 3 or more of the following:
 - an appropriate electrical leak location survey before and after the GMB is/was covered,
 - a high-level of hydrogeologic protection and attenuation, and/or
 - excellent CQA, and/or
 - an extra level of engineering in the form of a secondary leachate collection/ leak detection and double composite liners

Take home messages What we have been doing, in general, with landfill design may not have been adequate for PFAS (more investigation is needed). Future design & construction needs more considerations of: Diffusion Leakage CQA with leak location Service life of the system

than has been common in the past

24

"The basics"

Books

- Rowe, R.K. (2001). <u>Geotechnical and Geoenvironmental</u> <u>Engineering Handbook</u>, Kluwer Academic Publishing, Norwell, USA, (Editor) 1088p.
- Rowe, R.K., Quigley, R.M., Brachman, R.W.I. and Booker, J.R. (2004). <u>Barrier Systems for Waste Disposal Facilities</u>, E & FN Spon, Taylor & Francis Books Ltd, London, 587

"Must read papers"

Geomembranes – leakage and service-life

- Rowe, R.K (2012). "Short and long-term leakage through composite liners", The 7th Arthur Casagrande Lecture", *Can. Geotech. J.* **49**(2): 141-169.
- Rowe, R.K. (2020) "Protecting the environment with geosynthetics The 53rd Karl Terzaghi Lecture", ASCE J Geotech. Geoenviron., 146(9):04020081, 10.1061/(ASCE)GT.1943-5606.0002239
- Rowe, R.K., Abdelaal, F.B., Zafari, M. Morsy, M.S. and Priyanto, D.G. (2020).
 "An approach to geomembrane selection for challenging design requirements", Can. Geotech. J., 57(10):1550–1565, doi:10.1139/cgj-2019-0572

Geomembrane strains

• Rowe, R.K and Yu, Y. (2019) "Magnitude and significance of tensile strains in geomembrane landfill liners", Geotext. Geomembr., 47(3):429-458.

27

Queen's U. PFAS Papers

Diffusion

- DiBattista, V., Rowe. R.K., Patch, D. and Weber, K. (2020) "PFOA and PFOS Diffusion through Geomembranes at Multiple Temperatures", Waste Management, 117: 93-103, DOI: 10.1016/j.wasman.2020.07.036
- Rowe. R.K., Barakat, F.B, Patch, D. and Weber, K. (2023) "Diffusion and partitioning of different PFAS compounds through thermoplastic polyurethane and three different PVC-EIA liners." STOTEN-D-23-00804 (in review)

Leakage

- Rowe, R.K. and Barakat, F.B. (2021) "Modelling the transport of PFOS from single lined municipal solid waste landfill", *Computers and Geotechnics*, **137**(9):104280-1 104280-11. <u>https://doi.org/10.1016/j.compgeo.2021.104280</u>
- Rowe, R.K. and Zhao, L-X. (2023) "Implications of double composite liner behaviour for PFAS containment", Proceedings of the 9ICEG 9th International Congress on Environmental Geotechnics, June, Chania, Greece, 10p.

Service-life

 Rowe, R.K and Somuah, M. (2022) "Effects of Perfluoroalkyl Substances (PFAS) on Antioxidant Depletion from a High-Density Polyethylene Geomembrane." J. Environmental Management 328,116979, https://doi.org/10.1016/j.jenvman.2022.116979

28

Other useful reading (+ papers listed for tailings)

- Rowe, R.K. and Islam, M.Z. 2009. Impact on landfill liner time-temperature history on the service-life of HDPE geomembranes. Waste Management, 29: 2689-2699.
- Rowe, R.K., Rimal, S. and Sangam, H.P. (2009). "Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures", Geotext. Geomembr. , 27(2):131-151.
- Rowe, R.K., Islam, M.Z., Brachman, R.W.I., Arnepalli, D.N. and Ewais, A. (2010). "Antioxidant depletion from an HDPE geomembrane under simulated landfill conditions", ASCE J Geotech. Geoenviron., ASCE, 136:(7): 930-939.
- Sangam, H.P. and Rowe, R.K 2002. Effects of exposure conditions on the depletion of antioxidants from HDPE geomembranes. CGJ, 39(6):1221-1230.
- Rowe, R.K. (2011). "Systems engineering the design and operations of municipal solid waste landfills to minimize leakage of contaminants to groundwater", Geosynthetics International, 16(6): 391-404.
- Rowe, R.K. (2014) "Performance of GCLs in liners for landfill and mining applications", J. of Environmental Geotechnics, 1(1): 3-21; http://dx.doi.org/10.1680/envgeo.13.00031

Topics of Papers on GMBs in TSF

GMB

- 1. Joshi, P., Rowe, R.K. and Brachman, R.W.I (2017) "Physical and hydraulic response of geomembrane wrinkles underlying saturated fine tailings", Geosynth. Int., 24(1):82-94,
- 2. Rowe, R.K., Joshi, P., Brachman, R.W.I and McLeod, H. (2017) "Leakage through holes in geomembranes below saturated tailings", ASCE *J Geotech. Geoenviron.*, 143(2):4016099
- 3. Chou, Y-C., Rowe, R.K. and Brachman, R.W.I. (2018) "Erosion of Silty Sand Tailings through a Geomembrane Defect under Filter Incompatible Conditions", *Can. Geotech. J.* 55(11):1564-1576.

30

Topics of Papers on GMBs in TSF

GMB

- 4. Rowe, R.K. and Fan, J.-Y. (2021) "Effect of Geomembrane Hole Geometry on Leakage Overlain by Saturated Tailings", Geotextiles and Geomembranes, 49(6):1506-1518
- 5. Fan, J.-Y. and Rowe, R.K. (2022) "Seepage through a Circular Geomembrane Hole when covered by Fine-Grained Tailings under Filter Incompatible Conditions" Can. Geotech. J., 59(3): 410-423.
- Chou, Y-C, Brachman, R.W.I and Rowe, R.K. (2022) "Leakage through a hole in a geomembrane beneath a fine-grained tailings", Canadian Geotechnical Journal, Published Online: 26 May 2021 <u>https://doi.org/10.1139/cgj-2020-0289</u>
- 7. Fan, J-Y and Rowe, R.K., (2022) "Piping of silty sand tailings through a circular geomembrane hole". Geotext. Geomembr. 50(1), 183-196. https://doi.org/10.1016/j.geotexmem.2021.10.003

31

Topics of Papers on GMBs in TSF

GMB

- Rowe, R.K. and Fan, J., 2022. A general solution for leakage through geomembrane defects overlain by saturated tailings and underlain by highly permeable subgrade. Geotext. Geomembr., 50(4), pp.694-707.
- 10. Fan, J-Y, Rowe, R.K., and Brachman, R.W.I. (2022) "Compressibility and Permeability of Sand-Silt Tailings' Mixtures", Can. Geotech. J., 59(8), 1348-1357.
- 11.Fan, J-Y and Rowe, R.K. (2022) "Effect of Subgrade on Tensile Strains in a Geomembrane for Tailings Storage Applications", Can. Geotech. J, <u>https://doi.org/10.1139/cgj-2022-0019</u>
- 12. Fan, J-Y and Rowe, R.K. (2022) "Effect of Subgrade on Leakage through a Defective Geomembrane Seam below Saturated Tailings" Geotext. Geomembr.,

32